Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles f64, f32, f16, and bf16 real & complex vectors.
  • handles i8 integral, i4 sub-byte, and b8 binary vectors.
  • handles sparse u32 and u16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
f64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
f32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
f16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bf16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
i8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
u8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing i8, u8 or f16 vectors, will use the same types for accumulators, while SimSIMD can combine i8 enumeration, i16 multiplication, and i32 accumulation to avoid overflows entirely. The same applies to processing f16 and bf16 values with f32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.

dist = simsimd.cosine(vec1, vec2, "i8")
dist = simsimd.cosine(vec1, vec2, "f16")
dist = simsimd.cosine(vec1, vec2, "f32")
dist = simsimd.cosine(vec1, vec2, "f64")
dist = simsimd.hamming(vec1, vec2, "bits")
dist = simsimd.jaccard(vec1, vec2, "bits")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming", # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="u8",   # so we can use `u8` instead of `f64` to save memory.
    threads=0,        # Use all CPU cores with OpenMP.
    dtype="b8",       # Override input argument type to `b8` eight-bit words.
)

By default, the output distances will be stored in double-precision f64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller u8 or u16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_metric_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);

    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;

    // Hamming distance between two vectors
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);

    // Jaccard distance between two vectors
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);

    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_metric_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-5.9.11.tar.gz (152.5 kB view details)

Uploaded Source

Built Distributions

simsimd-5.9.11-cp312-cp312-win_arm64.whl (54.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-5.9.11-cp312-cp312-win_amd64.whl (82.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-5.9.11-cp312-cp312-win32.whl (51.8 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-5.9.11-cp312-cp312-musllinux_1_2_x86_64.whl (624.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp312-cp312-musllinux_1_2_s390x.whl (306.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl (362.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp312-cp312-musllinux_1_2_i686.whl (318.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-5.9.11-cp312-cp312-musllinux_1_2_armv7l.whl (259.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp312-cp312-musllinux_1_2_aarch64.whl (438.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp312-cp312-manylinux_2_28_x86_64.whl (681.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp312-cp312-manylinux_2_28_aarch64.whl (396.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp312-cp312-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-5.9.11-cp312-cp312-macosx_10_13_x86_64.whl (91.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-5.9.11-cp312-cp312-macosx_10_13_universal2.whl (148.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-5.9.11-cp311-cp311-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-5.9.11-cp311-cp311-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-5.9.11-cp311-cp311-win32.whl (51.8 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-5.9.11-cp311-cp311-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp311-cp311-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp311-cp311-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-5.9.11-cp311-cp311-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp311-cp311-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp311-cp311-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp311-cp311-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp311-cp311-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-5.9.11-cp311-cp311-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-5.9.11-cp311-cp311-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.11-cp310-cp310-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-5.9.11-cp310-cp310-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-5.9.11-cp310-cp310-win32.whl (51.8 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-5.9.11-cp310-cp310-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp310-cp310-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp310-cp310-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-5.9.11-cp310-cp310-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp310-cp310-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp310-cp310-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp310-cp310-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp310-cp310-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-5.9.11-cp310-cp310-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-5.9.11-cp310-cp310-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.11-cp39-cp39-win_arm64.whl (54.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-5.9.11-cp39-cp39-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-5.9.11-cp39-cp39-win32.whl (51.7 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-5.9.11-cp39-cp39-musllinux_1_2_x86_64.whl (624.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp39-cp39-musllinux_1_2_s390x.whl (305.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl (361.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp39-cp39-musllinux_1_2_i686.whl (318.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-5.9.11-cp39-cp39-musllinux_1_2_armv7l.whl (258.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp39-cp39-musllinux_1_2_aarch64.whl (438.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp39-cp39-manylinux_2_28_x86_64.whl (680.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp39-cp39-manylinux_2_28_aarch64.whl (396.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (215.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (270.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (226.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp39-cp39-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-5.9.11-cp39-cp39-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-5.9.11-cp39-cp39-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.11-cp38-cp38-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-5.9.11-cp38-cp38-win32.whl (51.7 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-5.9.11-cp38-cp38-musllinux_1_2_x86_64.whl (624.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp38-cp38-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl (362.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp38-cp38-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-5.9.11-cp38-cp38-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp38-cp38-musllinux_1_2_aarch64.whl (438.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp38-cp38-manylinux_2_28_x86_64.whl (681.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp38-cp38-manylinux_2_28_aarch64.whl (397.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (227.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp38-cp38-macosx_11_0_arm64.whl (81.2 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-5.9.11-cp38-cp38-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-5.9.11-cp38-cp38-macosx_10_9_universal2.whl (150.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.11-cp37-cp37m-win_amd64.whl (81.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-5.9.11-cp37-cp37m-win32.whl (51.7 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_x86_64.whl (623.9 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_s390x.whl (305.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_ppc64le.whl (361.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_i686.whl (318.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_armv7l.whl (258.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-5.9.11-cp37-cp37m-musllinux_1_2_aarch64.whl (437.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-5.9.11-cp37-cp37m-manylinux_2_28_x86_64.whl (680.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-5.9.11-cp37-cp37m-manylinux_2_28_aarch64.whl (396.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-5.9.11-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-5.9.11-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-5.9.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (227.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-5.9.11-cp37-cp37m-macosx_10_9_x86_64.whl (93.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-5.9.11.tar.gz.

File metadata

  • Download URL: simsimd-5.9.11.tar.gz
  • Upload date:
  • Size: 152.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11.tar.gz
Algorithm Hash digest
SHA256 053c034c73aa291cc9189ce90f49ca6c5d4e0b30e4d990a25965c2f516d4a21a
MD5 5847c1e092895aab0e9166f73a820aa1
BLAKE2b-256 7f205a69ec4486b9d55b9eb2a9efe414918b9b1abd642c3a8ac7eef0cf15c104

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11.tar.gz
    • Subject digest: 053c034c73aa291cc9189ce90f49ca6c5d4e0b30e4d990a25965c2f516d4a21a
    • Transparency log index: 146234488
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 e36a24f31553f86550f6fb3da622c083565d4de7c400bfa80032dd556ae0c2a3
MD5 c4ce7eaaec69a0eb83552d11279af0ab
BLAKE2b-256 32c9be9dac1ecf96377e3e23bc36b54bddb9b8ad5e67f6bb60315227c81286a7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-win_arm64.whl
    • Subject digest: e36a24f31553f86550f6fb3da622c083565d4de7c400bfa80032dd556ae0c2a3
    • Transparency log index: 146234517
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 82.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 845172ff6358b285c77311964170e7b50b4de953f8d9f760c8c641cac964966a
MD5 586bd5507d3cb60f9a26abb3520488b4
BLAKE2b-256 fe11199b750131a2e5cdd1871df1e42da3b13ea06994207a5182461c267847d7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-win_amd64.whl
    • Subject digest: 845172ff6358b285c77311964170e7b50b4de953f8d9f760c8c641cac964966a
    • Transparency log index: 146234528
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp312-cp312-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 be5cf7833bebdb520fd2a81875ba8740921baba9e0d4ba123041f6b8c358c407
MD5 0c636ebd513181d08f45a6f4e75aa739
BLAKE2b-256 9974f61c80323696186cc8d5367d54b8fb9e1bff3e7d096f6f124560ea35bd45

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-win32.whl
    • Subject digest: be5cf7833bebdb520fd2a81875ba8740921baba9e0d4ba123041f6b8c358c407
    • Transparency log index: 146234556
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 32f52284c56ed1631054b679151663febeca4a0d265fb11b2d09450e51a80108
MD5 df7486acbde40a460921c556ff0b30c3
BLAKE2b-256 3970ec3a18d99761216f80b8ab1ed1c5aad3b9f1964e01a2c2237888499933d5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: 32f52284c56ed1631054b679151663febeca4a0d265fb11b2d09450e51a80108
    • Transparency log index: 146234533
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 36bac4397b6d50dbc63be3fab6bb2d93256c892384b0bbb0ca7eeb9fc1386a60
MD5 652a8a7ce171381930504a71d477f659
BLAKE2b-256 162480bbf87f5ddffef3ffde5f6f27a77756726ce8a01bd065d690524ff819ea

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: 36bac4397b6d50dbc63be3fab6bb2d93256c892384b0bbb0ca7eeb9fc1386a60
    • Transparency log index: 146234594
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 d4b7adf20cee0850937550faa1031fc6de5ab2a60d75242608e72809f308c98c
MD5 fe94c932498d046589748539b7d8b372
BLAKE2b-256 8c387c6523c3cadb726d19b68a980c7a5b47268d741aab6e784fb76499d111b8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: d4b7adf20cee0850937550faa1031fc6de5ab2a60d75242608e72809f308c98c
    • Transparency log index: 146234539
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 344d4e276d40eeaf6c724ce3aa309204c49bbc4d64c45e961861053d46557e3f
MD5 80fde137641814afba4eed13cca09529
BLAKE2b-256 3649fbc841f9c860850cf0eaccaf77f65f583010c82b9c3301f0fbbce7414fbe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: 344d4e276d40eeaf6c724ce3aa309204c49bbc4d64c45e961861053d46557e3f
    • Transparency log index: 146234551
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 a65aad00bbae4a7c28383a925e61f5d43edfeed8afc494e1533e5670b6d74900
MD5 8bc3a88d4ccbc75a25f389ff9eeaf7e6
BLAKE2b-256 66dd0c827f99415b6afa0b70dcb159c94b78218820f658f87afbc29abc5da86a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: a65aad00bbae4a7c28383a925e61f5d43edfeed8afc494e1533e5670b6d74900
    • Transparency log index: 146234540
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c3467413ba3343d683f1f40ed48f424ecb1f4f21dcb4d4aa0fab93790a75f375
MD5 6ed4dc136d5c25a50d101ba9c2676fee
BLAKE2b-256 640e94d3983ab221b69e8946a8e30dcbe935eaa888b3283ef75abfe7d62fb7f2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: c3467413ba3343d683f1f40ed48f424ecb1f4f21dcb4d4aa0fab93790a75f375
    • Transparency log index: 146234600
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 42c575afe5f9a8195ff86c4fc019972a373c1a3dd08b2263a3e4fc9f3dd9f3a0
MD5 121e083b17087bfb3799c18713e02fc6
BLAKE2b-256 f158f08da4ff9c6fc1acfd9d0462aca6a17cc906fd742bf0eb1889b20a74ba37

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: 42c575afe5f9a8195ff86c4fc019972a373c1a3dd08b2263a3e4fc9f3dd9f3a0
    • Transparency log index: 146234610
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d55e497ac4f30c31cb3046f81d18855e007d12ff1673437bac1e1a8c017f67d6
MD5 3848570673fc633d97f3eff371e04562
BLAKE2b-256 6fbaa59e24b747e26a3f049269dd5f89a5e0b6c2a8c61b744671b2b5d5ab6257

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: d55e497ac4f30c31cb3046f81d18855e007d12ff1673437bac1e1a8c017f67d6
    • Transparency log index: 146234520
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e8d2e9f0e7d2b790ceaab1e6860de1026549a20995d93c55d81c590af4df8e82
MD5 e02feb243af68ebb0d49b43ad081bf4a
BLAKE2b-256 49c089fcacf37f7cac07bc967f1e13a032e57caea26b0ef060e3bc1a95dd68b2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: e8d2e9f0e7d2b790ceaab1e6860de1026549a20995d93c55d81c590af4df8e82
    • Transparency log index: 146234496
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7be158270caeb2e3daf616e052690a5bea41c81b9007d46d0746aee605001616
MD5 dcd6e707917faa2953e82a7f475d1ecf
BLAKE2b-256 709ec6973e92df62dba5758a08e0459ad55d860b6c891a5f7fb059b51b50f1ab

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 7be158270caeb2e3daf616e052690a5bea41c81b9007d46d0746aee605001616
    • Transparency log index: 146234567
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cc6286d20cf837d26a3943504eecb4db5b68046c06797ac125fbad6b5134ee3e
MD5 dee7fefdb9d241afcb1d01dab493544d
BLAKE2b-256 e16f38ca2a02bc0dcfa2e809f2c2f971809343b9e13747333cde92b3b781c6bf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: cc6286d20cf837d26a3943504eecb4db5b68046c06797ac125fbad6b5134ee3e
    • Transparency log index: 146234587
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 46afcd0b7b59fefffdfb91b0e83e881e56b536acb072343cf73d49fbad83bb8d
MD5 030fd3b2877ac55f3a18f574338d0a5b
BLAKE2b-256 c92b20f8c16836da6222a5507416cb3113a64aa49f6ff635daddecc163c90abd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: 46afcd0b7b59fefffdfb91b0e83e881e56b536acb072343cf73d49fbad83bb8d
    • Transparency log index: 146234596
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 95f984148040fd6ffec3bdd8ad68a1750c5bda16c226ff14ccdfc1439705a3b4
MD5 9dedf194aa1a17aedf32125b3a6db79d
BLAKE2b-256 5d0b07f02bd5731b62237fd595f18f7917f3b1183d6d2b9d42b49075e4ead006

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: 95f984148040fd6ffec3bdd8ad68a1750c5bda16c226ff14ccdfc1439705a3b4
    • Transparency log index: 146234560
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 b614a22531f35f9dc752c09da96cc3457f15c5d0ca3e2a12d13d54d2441a476d
MD5 063f9e25c3df14c452cdfe5fa36d267f
BLAKE2b-256 59fd4b61e776b4d18443a361cb4a636bc20e05572e091f9b630a067facda366d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: b614a22531f35f9dc752c09da96cc3457f15c5d0ca3e2a12d13d54d2441a476d
    • Transparency log index: 146234606
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 605af1cf0d903f31dc488a94e2e6734d3047baa41d40b362fb3285144b383f63
MD5 c12ab3eea1b7121d125b1a988db74762
BLAKE2b-256 2b18329db51168225902626897e507e73873b0e517856ea7f772808bdc1c3136

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-win_arm64.whl
    • Subject digest: 605af1cf0d903f31dc488a94e2e6734d3047baa41d40b362fb3285144b383f63
    • Transparency log index: 146234495
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 706e5db8f9b5d3fea9cbf549323c57ef8529d4536cf66784ab7926fb31c3f3d3
MD5 dd3f8c86b1d5c375d53742f0d21f5788
BLAKE2b-256 7aa8320ae35bf35dc862957862c2fdfcee6998445396bc3c4ef1f65f01842226

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-win_amd64.whl
    • Subject digest: 706e5db8f9b5d3fea9cbf549323c57ef8529d4536cf66784ab7926fb31c3f3d3
    • Transparency log index: 146234586
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp311-cp311-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4b4f77da77016b8f7c2ccc8c2203d7f59112b471dc3ee047fdce72fb63f63647
MD5 b34fe7c99a4fc0147ac72001274af953
BLAKE2b-256 85f644bd0cd08049de6d9bfcf61a0f985b1adbaa52f46adf4418a40cb367352b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-win32.whl
    • Subject digest: 4b4f77da77016b8f7c2ccc8c2203d7f59112b471dc3ee047fdce72fb63f63647
    • Transparency log index: 146234493
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 866adcbfb93840e5b1915e834afda3b244fda8895aa3bdc96bbd0d51f24898f7
MD5 1d4b645036a30554d704be9fa6758048
BLAKE2b-256 8a6cac7dd216a9011df7514aa6b702a5db304643112129058f7f2a2a26a6be7e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: 866adcbfb93840e5b1915e834afda3b244fda8895aa3bdc96bbd0d51f24898f7
    • Transparency log index: 146234536
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 32f0980848ca322fa81f8e9b73291ab780c24fdb23ad976668967830c99cfe09
MD5 927f8c83d263b07e8b72694d3ed34755
BLAKE2b-256 4277c75c9e643fb25192c8776a83808c34275309b8e31592d7de6ca580cf34a2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: 32f0980848ca322fa81f8e9b73291ab780c24fdb23ad976668967830c99cfe09
    • Transparency log index: 146234574
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 31f5e8b8210ac600910fa0631f094c54564e363ee72881194578ba2630721fce
MD5 00bc2bcc33ed64b22f63682d75414731
BLAKE2b-256 229d7541ccf95a32450d0ccdbce4c9bb3e8e055c2eb00661c6ca1d08c43ce1c9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: 31f5e8b8210ac600910fa0631f094c54564e363ee72881194578ba2630721fce
    • Transparency log index: 146234604
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f48db0b476dc4f3805cd83050483a3eda59b2c1e4861ca634382c0135d5848c3
MD5 e2cf2736faf257930afb5fc20810a662
BLAKE2b-256 a1ecc1fc1c247aee43e97965fa0010097dcee12e026fda736bc5195bc2d3a805

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: f48db0b476dc4f3805cd83050483a3eda59b2c1e4861ca634382c0135d5848c3
    • Transparency log index: 146234532
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 332c1abf09ffbc56e8ffa0d4fe91e6505dcc6fe8a4c3212922d7e45047b55210
MD5 3572d66b8b75b28ef3772c903e54403a
BLAKE2b-256 28c8a34741a1a4d3710f7c33e5912f1d04008b83a8f3bb12faf1be1e72db5de5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: 332c1abf09ffbc56e8ffa0d4fe91e6505dcc6fe8a4c3212922d7e45047b55210
    • Transparency log index: 146234581
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f318c4aaf8d8fbe168da6bab406a598e8a8710509bcfdb758d4f27ee66991d19
MD5 62e5c1995ebd9012299c26b90523cf61
BLAKE2b-256 14142bce581bed325a72a91406a8ef87e73e1efeefc2d788dd7a8f284f4c76cc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: f318c4aaf8d8fbe168da6bab406a598e8a8710509bcfdb758d4f27ee66991d19
    • Transparency log index: 146234491
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c9073d17f1ec774c3be6f3ae2bb6022cf329961ead6a53540a852f58a56d80f1
MD5 63b46d59e1e4139c3d06d99c5581bbfe
BLAKE2b-256 96d0b6a03250295ebe7c60ee5927e03a834e8a33c26b6dc14de1cf16e253a378

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: c9073d17f1ec774c3be6f3ae2bb6022cf329961ead6a53540a852f58a56d80f1
    • Transparency log index: 146234575
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2f08648184772dde6286a532f4034b56be62407d2240f0fa50e9896dd269fd9f
MD5 dbb6e1bda6395e8df0ecece5cb1cc92f
BLAKE2b-256 602422cdc462329e7be541857e9c7c727941432c301bd4f5ae7a69f91dfa1df4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: 2f08648184772dde6286a532f4034b56be62407d2240f0fa50e9896dd269fd9f
    • Transparency log index: 146234571
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7a925d2ced1d55bb994a77d563cc1cd9be6b628e555d55782ff4844fd2eff40e
MD5 16aa1ddbcf45e8f4ccc65548a199beba
BLAKE2b-256 2822e3b04fdffaad6cc629e8697846bdc2e5712f79b00c6319e5fea1eeab2773

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 7a925d2ced1d55bb994a77d563cc1cd9be6b628e555d55782ff4844fd2eff40e
    • Transparency log index: 146234518
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3976480e40074dd8ab2e327b0620791f37f88958e23659848d65e9eaee075d69
MD5 24bcafa536ad59bb54e3ef22ab1df5d6
BLAKE2b-256 0ab7f705e8395dd94bd10145e1696d46d95898319554070d2442d20d34b44b30

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 3976480e40074dd8ab2e327b0620791f37f88958e23659848d65e9eaee075d69
    • Transparency log index: 146234501
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 79f0f9a2aaea47b7feda669592d40c41a3c803d9207ecb96b551e2b10badeb61
MD5 8ab8de2490b3306c43d21839af8bbfa7
BLAKE2b-256 bacab9597026dc434b3c91001e3c916b7f2355f0a65b6085ae2d3575e2afdf3f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 79f0f9a2aaea47b7feda669592d40c41a3c803d9207ecb96b551e2b10badeb61
    • Transparency log index: 146234527
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a77dd15b362f71ea95ff9a4eba895d34740261ff56092303e18c7b5584b86eb4
MD5 7e670886fd55ac614e5e50d72d7f3f13
BLAKE2b-256 8cf11c0d64cc80fa5cf2e2e4db1519b127a349235aee51a4f441a0f398d08d3d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: a77dd15b362f71ea95ff9a4eba895d34740261ff56092303e18c7b5584b86eb4
    • Transparency log index: 146234562
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a2e1b942270c0e13a242980f6ee28791cbef68842b1365510422e3f3b1108e5
MD5 58e6c038570a96be60f068fda8fc8568
BLAKE2b-256 7163ddad64fa2c5ad46fe58ff7de35994f371fdd3402d6b2c55321cfcd05dc2d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: 6a2e1b942270c0e13a242980f6ee28791cbef68842b1365510422e3f3b1108e5
    • Transparency log index: 146234609
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 dc3161c6e2f966b06b407ca16a01157e4f62aeb54849102b2381c75afe96de63
MD5 779735f0ba7461f452916dec40c70631
BLAKE2b-256 9c1c77a09ec5c63edc11ce4d18a2ae92406b501252be4bc9f1d57e73b5f0f1d7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: dc3161c6e2f966b06b407ca16a01157e4f62aeb54849102b2381c75afe96de63
    • Transparency log index: 146234522
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 a1429f7c48ac6743414e6877554ed18d62e03338162bcc506218869467790ed0
MD5 7fe17ec3c21dcaa5b31f2e7d7ec2b3d2
BLAKE2b-256 a343d77c190322f4ade150c07b399725bab23397ee54b9ecb876ad7a2ce6ee9b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-win_arm64.whl
    • Subject digest: a1429f7c48ac6743414e6877554ed18d62e03338162bcc506218869467790ed0
    • Transparency log index: 146234578
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b5030de0fa780e2f33b7b9fc176cea6455205c275bb23fba952c4f25a87fa30e
MD5 809f337ab45091026b73148ac882a4df
BLAKE2b-256 57bf05f56228b8e27698f3edadd56192524b26ab48809189656039effcf97e0b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-win_amd64.whl
    • Subject digest: b5030de0fa780e2f33b7b9fc176cea6455205c275bb23fba952c4f25a87fa30e
    • Transparency log index: 146234602
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3b9b112bd2d3f4579b7946463ccaa245cae21ac673c19401b8655ed0984b08dc
MD5 8b6d864651ce17a0adcc6d5e5641a5a3
BLAKE2b-256 f39a3c073c70a2367231ce518e7fdbd44bcde8b2480ef9a77415dff212d5f69d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-win32.whl
    • Subject digest: 3b9b112bd2d3f4579b7946463ccaa245cae21ac673c19401b8655ed0984b08dc
    • Transparency log index: 146234564
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a2b2113f6cee7882f58adab0a7b8939075938addb77df28f5c4f5f88a38a4150
MD5 886cac2e433c16b89c2a5c5f95d1785a
BLAKE2b-256 201f620e147a30e4fb7da633b488928156c355e5b7058f40b8dca079e92c046e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: a2b2113f6cee7882f58adab0a7b8939075938addb77df28f5c4f5f88a38a4150
    • Transparency log index: 146234572
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 accaf43fdc9a32c5fb3cc501af91e8a6eb4443f871598f66282e83e705096627
MD5 c4a19c73dd33601d117cd785c8ffb74a
BLAKE2b-256 23592fcc2a5f220f5a73e18ac0c08763d3d9423ba240fcb9dd7a75014f2ea1a2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: accaf43fdc9a32c5fb3cc501af91e8a6eb4443f871598f66282e83e705096627
    • Transparency log index: 146234588
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 fb7b5c3348a8ba2c4f8dbc16925e83ac4556ff7c98a086008c77d7ee192449b0
MD5 0801652fb2f92e42fed76d9c73964420
BLAKE2b-256 5ccb8ca23e1495aff8179364a5148fbf03b4aee361ec226fb5f2ac8baebec431

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: fb7b5c3348a8ba2c4f8dbc16925e83ac4556ff7c98a086008c77d7ee192449b0
    • Transparency log index: 146234509
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a8a211130e8499c60463b77208f51bee04ddb8d3dfece7371bb5e5b878105cdc
MD5 72678a150210922ff81b6efa57fca837
BLAKE2b-256 5618f0b07b6422688b1e506c08dd9d9786be623875ba8019c21fbff211a17508

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: a8a211130e8499c60463b77208f51bee04ddb8d3dfece7371bb5e5b878105cdc
    • Transparency log index: 146234550
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 ecec772486848ccf52e076781591f467c339c6b19dcf66720f8d5b0ede47717d
MD5 da2910a06faee4658a3e916237cfb1f5
BLAKE2b-256 8c473876b3201ff4088c2d722585881f88068fea9966c9691df1393e6e85d3bd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: ecec772486848ccf52e076781591f467c339c6b19dcf66720f8d5b0ede47717d
    • Transparency log index: 146234549
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 de94d6457949888f17a94ddf165f179ca4f8b83cc9eaedf9a97daeddceae829d
MD5 eac7be8378fc81b60a6222ad606424a0
BLAKE2b-256 70707017752fb60506eada7bdcf526e92d4357f2dc96d448bbfd32b6e7154999

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: de94d6457949888f17a94ddf165f179ca4f8b83cc9eaedf9a97daeddceae829d
    • Transparency log index: 146234589
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 79a2a722ccce98375a3ff7033ad21a323b03f41032b004d43817a81baf873b53
MD5 7aaeb22fbcb1209d981d7a5321ab866a
BLAKE2b-256 31e0dae559f866e020c41243c259b1d61177ed7ca765a41ed97c448471c0cb1e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: 79a2a722ccce98375a3ff7033ad21a323b03f41032b004d43817a81baf873b53
    • Transparency log index: 146234544
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 856d59a644e3208512895aa19c52d3fa28f7359ccc6a526c99ec40a0c94d014c
MD5 11478babad42cb113267f0b8d45ab5c5
BLAKE2b-256 be953ffb73123a98b3dd742e1e7668ffb59bb6958819590a726b8b893fa9b5cd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 856d59a644e3208512895aa19c52d3fa28f7359ccc6a526c99ec40a0c94d014c
    • Transparency log index: 146234534
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ca73c0161f47681a2b5e266dfe5fee5b75bc0c0093b978641dd672f38c9c8abf
MD5 384d5fec2d24d5794ffa6a69bfd033e4
BLAKE2b-256 58aede577f1991677eebc077fd1511b0a9ae9c2942e85d70d36fccb8cd231a51

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: ca73c0161f47681a2b5e266dfe5fee5b75bc0c0093b978641dd672f38c9c8abf
    • Transparency log index: 146234546
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f12d43eaab7bae5ae3e9f0fcbbbe8811eb1e28bb9b7bb68b8a78c8afdcca16f3
MD5 a30faa83299034c89c482513d4f8e334
BLAKE2b-256 2bb211e2c3dbae577a39e99eefc070084dcaf96d8b9852beab7c62ceb5ff4ed5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: f12d43eaab7bae5ae3e9f0fcbbbe8811eb1e28bb9b7bb68b8a78c8afdcca16f3
    • Transparency log index: 146234555
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 59a89ea757ef18014a56c16096cd80e85ec5f2d71d23068d751747e6154229d4
MD5 e2c6b23a8211a7e018be02a57ac17d4a
BLAKE2b-256 88e85a7ad2224cdbc9f61d52890d48429c883ac72052e3d22e34359462e11ae1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 59a89ea757ef18014a56c16096cd80e85ec5f2d71d23068d751747e6154229d4
    • Transparency log index: 146234508
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f142bbefed325ac74d7209044b2fa777a6737a907fbd39359db6c72271204cfa
MD5 dba99575e0945000d17159e34957bf3f
BLAKE2b-256 1c9a027f349b2c129900ec42f8e77045bac6c6f6b0b282c78c01a94c8a9c2b48

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: f142bbefed325ac74d7209044b2fa777a6737a907fbd39359db6c72271204cfa
    • Transparency log index: 146234580
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 323468e396f94eda2494df6b85214f6e4b16812e28cab5eab5ced507aa7221de
MD5 e4b03f80a21bafbac819f6244bbc5252
BLAKE2b-256 348e824d1f6b7f3d29da01086e182fbc2f7f42a8afd34b3a83d0260ccc0e1875

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: 323468e396f94eda2494df6b85214f6e4b16812e28cab5eab5ced507aa7221de
    • Transparency log index: 146234492
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 84a534ccd04d7aa5c4539817e09f94c5c5d4bfee9d72078b89b7e18c811100ac
MD5 6bf24a9ecc9292ce9ae59230e3d0ab1b
BLAKE2b-256 46eeed070d19e9b8754f9e0362dd5a7c7a49a7802bd419276d7fd794288b4b58

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 84a534ccd04d7aa5c4539817e09f94c5c5d4bfee9d72078b89b7e18c811100ac
    • Transparency log index: 146234573
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 54.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 0c63ddf5ad90ae2c80309e7763a2d4306738e19f31b614f1cc6d0f784199350a
MD5 f25ad311971da638020429d95df888ca
BLAKE2b-256 768928c8922786ead65232674966167beb2e18097ee26d3802c9053337cfdf1e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-win_arm64.whl
    • Subject digest: 0c63ddf5ad90ae2c80309e7763a2d4306738e19f31b614f1cc6d0f784199350a
    • Transparency log index: 146234547
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 86f24a980c2ac10ad8e6341281c86bc769f84c30f633ba8213d7ee046bbe9599
MD5 b8126e58432e55c507664f69f7f4efd2
BLAKE2b-256 a7d7bd28221bfa992f8d0eb6eb72ca2592e0c73d79f1aa8a07509375e7db21f8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-win_amd64.whl
    • Subject digest: 86f24a980c2ac10ad8e6341281c86bc769f84c30f633ba8213d7ee046bbe9599
    • Transparency log index: 146234568
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2a1ffe93e781a292f1b1d34b47fbabe82414212e8cb97340428cfe4e800b72c8
MD5 51173d66a3319f58c763a0ecb7066706
BLAKE2b-256 789c700f2feb0a13894e7c436871bee1df6ab731abf772ad3c42a85fe6ec658b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-win32.whl
    • Subject digest: 2a1ffe93e781a292f1b1d34b47fbabe82414212e8cb97340428cfe4e800b72c8
    • Transparency log index: 146234558
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3244d8cbc12d2fbc0daf59df7160242871755daabd8cc01e0c905cbdfebbbb1b
MD5 74aee2f816610acaa2df64761deef9a2
BLAKE2b-256 15dcfd8a97f860a63920f2a8468a7f8e6d73dbdf6c0b472001587f8ac3c93248

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: 3244d8cbc12d2fbc0daf59df7160242871755daabd8cc01e0c905cbdfebbbb1b
    • Transparency log index: 146234553
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 b7727c80524768548122eecd5107229e7c1958e97bc666057ce8356703c805a1
MD5 4254104f2672af06ec1d58c11890aea1
BLAKE2b-256 d2f4dd40fe35efd9c01adce38b6aa382971780eaa17ffca8aa5ee27cd9ec5449

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: b7727c80524768548122eecd5107229e7c1958e97bc666057ce8356703c805a1
    • Transparency log index: 146234615
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 ba227f65df3bed228843f6226d0a55682fc1c58bfb68c6dda4bad394dfbbf535
MD5 db42704f6e3c775a250ac7f568f854c8
BLAKE2b-256 700bc8fb3acf7a4e7f0e6f5530acb7c25e1f03eb5434f874112ec048dfd36c22

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: ba227f65df3bed228843f6226d0a55682fc1c58bfb68c6dda4bad394dfbbf535
    • Transparency log index: 146234525
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 841447f583b11045bfd4e1427aeeee00678d12f67ddd218cb7614f96898bee5f
MD5 40f77c50fb4844b4e0a36c0d4a666765
BLAKE2b-256 ee08819399545742a11e3eaaa42f45945dc3a0177a4035aa494182b6dfca9720

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: 841447f583b11045bfd4e1427aeeee00678d12f67ddd218cb7614f96898bee5f
    • Transparency log index: 146234499
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 d64e680c8bd3430f0d74f8f20e0e8e98c5c7631e0d31a3f5cb9700149d647300
MD5 c5663c108b6b84b449b5b794cbe1f0b0
BLAKE2b-256 5445bc407a61e94a66b1fcb090bab44dca34c7faa6b9e97d7cd7288df2a698f0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: d64e680c8bd3430f0d74f8f20e0e8e98c5c7631e0d31a3f5cb9700149d647300
    • Transparency log index: 146234515
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f84adb867f09bea8cc30ca415b2d5716783645e9fb1607ac65492ed8e8efec22
MD5 01b3b42209e2792b02c3136c7d0b768f
BLAKE2b-256 612926f70b7e122445f7310da75b7a72089e29c0f6ed3123fecca6e2d1d5bdad

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: f84adb867f09bea8cc30ca415b2d5716783645e9fb1607ac65492ed8e8efec22
    • Transparency log index: 146234537
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 75fca4eb8a0a8ba9058039c0ff30e77ad4d7d5d997340676a0c2c7c62e6d3bd7
MD5 2b616c1512d1a466b0dbe57cf0c04062
BLAKE2b-256 ad8a0d7a1e2ce74ad09791a2df853a0159a9adb916ded82f19600c89f6da487b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: 75fca4eb8a0a8ba9058039c0ff30e77ad4d7d5d997340676a0c2c7c62e6d3bd7
    • Transparency log index: 146234585
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 71ca186e4209e14b2c9ed856e7d831cacf53d6855993eef3417adb030604011b
MD5 edb98a9a0984fd3896e91de17afb0eec
BLAKE2b-256 22ba77ab02d5aba131955f7d7004691bee0181e359a929bfce8e4ad404b9cea9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: 71ca186e4209e14b2c9ed856e7d831cacf53d6855993eef3417adb030604011b
    • Transparency log index: 146234535
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c6cb96639886e69cb1772579536d21204461b775f2383250f5ce5c1e575ad300
MD5 545ac4de1ea85366134403af764869ac
BLAKE2b-256 9e8b847acb671d99b8062db475178c59e02c61953118e964375351ca3a21180b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: c6cb96639886e69cb1772579536d21204461b775f2383250f5ce5c1e575ad300
    • Transparency log index: 146234608
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 362ba4aa418460e8f1e3a2cd13b8dd274525dffc0b26c5a4e75cacf14e8af45b
MD5 0b4c22100af528a61f18e6d6e90e7c25
BLAKE2b-256 f29712666f3cf0eb2bf425fc4ec0fd2a6b16ba1ad2bee998d5570210d27d992d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 362ba4aa418460e8f1e3a2cd13b8dd274525dffc0b26c5a4e75cacf14e8af45b
    • Transparency log index: 146234541
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4fba6dfba372229683b7f78b7ff6892601c2eacd861e66e4d84bfa638bd75ed
MD5 74acd8631969502ceca5e9abaeb50be2
BLAKE2b-256 16c2aa6d1877af53fc6ad383edcdfd3ed0d3225dec3c68ff198ee8c608106f72

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b4fba6dfba372229683b7f78b7ff6892601c2eacd861e66e4d84bfa638bd75ed
    • Transparency log index: 146234506
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d5b0a270566ec15d43ce43b1f2b913db3ddd16d230772c29ff2f0402ecffc3d7
MD5 e522215ed4eca1827f617128bfb6fdb8
BLAKE2b-256 7eb9862e93be8006df8c4f055adb69c7a8046a03076e0396ba5654cdcf3b9a28

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: d5b0a270566ec15d43ce43b1f2b913db3ddd16d230772c29ff2f0402ecffc3d7
    • Transparency log index: 146234504
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b2bf459923688974ab090e5b67b595aa2d9074c6e3d5cc2e70ca57e2c325b01
MD5 654d4dd1b609f21d6908341cf8d202d1
BLAKE2b-256 5682e0c84abb7e281c9806119d7a0477c1180f9df54d61e84e1c435b749e3f96

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: 3b2bf459923688974ab090e5b67b595aa2d9074c6e3d5cc2e70ca57e2c325b01
    • Transparency log index: 146234593
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8e4fef000c8bd3603f5e6884dba5aaf2909ca170be99f41516ef304fcbc9411e
MD5 a26e64fec8b6b23fc498dd79bf3935e1
BLAKE2b-256 3d2fc7e1c0e223bcd9a32112e5a8d8758f9c762b45801afb7e83d25ee7c19405

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: 8e4fef000c8bd3603f5e6884dba5aaf2909ca170be99f41516ef304fcbc9411e
    • Transparency log index: 146234513
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0f976b8e3341ee3099ff247a2bed8e82beec7e74ef634b99b51945e33fab28b7
MD5 b76408cdd0b371f85c2cc14c19f8c7f2
BLAKE2b-256 e91eac314bbca7e6b5be43c5c6d1e67457b8ea9689760d5c413f50f3b08e8041

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-win_amd64.whl
    • Subject digest: 0f976b8e3341ee3099ff247a2bed8e82beec7e74ef634b99b51945e33fab28b7
    • Transparency log index: 146234494
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ab572de6a37435c475daa6e5deacc829cb79e028dd7269f463bf51c420e34bc0
MD5 003f6f2c892e50744505c72cda6da475
BLAKE2b-256 35c9a8be12668a75c1d1a888dbdc9ab70cee1635f43400fbfea58b819ae31bf9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-win32.whl
    • Subject digest: ab572de6a37435c475daa6e5deacc829cb79e028dd7269f463bf51c420e34bc0
    • Transparency log index: 146234577
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9a4770ac29c2c02e5d02fbd7125bc7365f008d08f06933559a4c4286e20531a2
MD5 3d98da16a49ae9c94640e60364f210b0
BLAKE2b-256 514294de78704d04cddc46f51528279e440db3b590c1d3818102d819eeca208d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: 9a4770ac29c2c02e5d02fbd7125bc7365f008d08f06933559a4c4286e20531a2
    • Transparency log index: 146234505
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 70788a80e399afcc787da4ff502f62e04339805b1f2e364f31d6529ee2de03da
MD5 405720f674d5275a5c18c6b86c3865b1
BLAKE2b-256 beb7c710d4077862ea26fe2836803499001f3940670ad94917c1639294d60ab9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: 70788a80e399afcc787da4ff502f62e04339805b1f2e364f31d6529ee2de03da
    • Transparency log index: 146234570
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 587638a18d9ed36df03a3c728a7fe10b7e79785fc3ce866a35fd58dce9e1f22f
MD5 08d23328618eca5925f85ddc8908b84c
BLAKE2b-256 c269c6cbd908336510bf89384d2a1551e5b0311a79b5e4a560249230485ae6c3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: 587638a18d9ed36df03a3c728a7fe10b7e79785fc3ce866a35fd58dce9e1f22f
    • Transparency log index: 146234612
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e42e725b040b97f318f2bba489c583ef4ff872987018461ebc2284c8b32ea96a
MD5 02c5ab5c2456e48a99830f878b5db5db
BLAKE2b-256 0d61e52386ddd20794b54f1818e222be99b584f64784f0a3fd1450fb3acbaecf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: e42e725b040b97f318f2bba489c583ef4ff872987018461ebc2284c8b32ea96a
    • Transparency log index: 146234605
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 aee92d573d54b9c985000cfbdcabda57cb0fe42ae678dd21f5475e1abd5b6739
MD5 d4232eb84b285e4d65fc3c07f4782d05
BLAKE2b-256 dfafc359554d5f9bc0be22f526e24f92fa98c82edbb2acfd09cb04cf5c027883

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: aee92d573d54b9c985000cfbdcabda57cb0fe42ae678dd21f5475e1abd5b6739
    • Transparency log index: 146234526
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 230f0df6a887313dad4626e657c7e44e5bc7279eddbdaf74e2e94c5862ccdd43
MD5 8b2bcbb0f757ed9c25b4770999e4954c
BLAKE2b-256 00536576ccd92120226095d18295e3322541003e0e2da9b8987e13f228b15fe3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: 230f0df6a887313dad4626e657c7e44e5bc7279eddbdaf74e2e94c5862ccdd43
    • Transparency log index: 146234614
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b9ec8271d3fa7f9b70ed39d3709a721fd5d94c2aa35767f06f7d908c7a55001e
MD5 551137484622b7c4b5e97e11c444c7e8
BLAKE2b-256 9c047148b45d73b89342a60ffbaf9373776ff5dbef40b0b649849f0be3ed4ea6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: b9ec8271d3fa7f9b70ed39d3709a721fd5d94c2aa35767f06f7d908c7a55001e
    • Transparency log index: 146234582
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 db2c103ca7a07f2021157e621db113bf5a5f5a6d32b11702aedca4b4054ae18c
MD5 6c5c3916b903f96290bb995def8dcd4b
BLAKE2b-256 313943ec309258a66e6b99eb39b9a0a996344328c9b69fcb919a04cf5d901cf8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: db2c103ca7a07f2021157e621db113bf5a5f5a6d32b11702aedca4b4054ae18c
    • Transparency log index: 146234512
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2297b60d61af009118ff769bda4d778ee5dfb7b557f177396297a5cda998ee1b
MD5 3e42fc7591a37e5968bcee4c71a112cb
BLAKE2b-256 de709268804fb102c3917681c24caf39be08141adb9eec2cae438715c019920b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 2297b60d61af009118ff769bda4d778ee5dfb7b557f177396297a5cda998ee1b
    • Transparency log index: 146234579
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2dd1a635f6e6b682ac594c02eb683f14b2052fbcc0d4ccdf4307c24b1130252a
MD5 b74fb1ccbb35500d86a3fc664b654644
BLAKE2b-256 c60bbd93b22824f7ddda5aedb78d8c797dda3d95a2cdd5998e8f6cd9ff8644f9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 2dd1a635f6e6b682ac594c02eb683f14b2052fbcc0d4ccdf4307c24b1130252a
    • Transparency log index: 146234521
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 825ad3c69e306ab35bff789acd2db5d6294852487a7ffa6179e14ecbed4c5316
MD5 45a3fdaba36de474052359e8417200a3
BLAKE2b-256 02d6944d6530fac0fdfa5c192cd04e4ba07e7e0c614b49a87a29a0bb033f2cd5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 825ad3c69e306ab35bff789acd2db5d6294852487a7ffa6179e14ecbed4c5316
    • Transparency log index: 146234514
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa9fc6c397ba9f31320d8b9b30068b0bb2857c09a6a01cf2e70892ec18b8012b
MD5 987f54e5cef55025472153ee92f29a17
BLAKE2b-256 a020d7fec8cc5450bf7d559e8d876d7ee7c35d9e36ffec43a04742761c6891de

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: aa9fc6c397ba9f31320d8b9b30068b0bb2857c09a6a01cf2e70892ec18b8012b
    • Transparency log index: 146234529
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a32b58753ff7956649253da75fc68382ddea99b19bef9df56d4b1726ff0a8d94
MD5 1dee7bd5bba9df898928035387c1ca9f
BLAKE2b-256 b3ef953ce442d931f3fa8f61918653ced08f04b624b74343a59d5efb532dd0f9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: a32b58753ff7956649253da75fc68382ddea99b19bef9df56d4b1726ff0a8d94
    • Transparency log index: 146234510
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d45725cc3797fd02be2bf8770dcfbd0c2eadef114c3960fb6924a765309549e0
MD5 18527cdf62655678310abd58f6cc5574
BLAKE2b-256 30dc312678167e75ee5238e3899930b04613a033163309d22ccb2123af59a0b4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: d45725cc3797fd02be2bf8770dcfbd0c2eadef114c3960fb6924a765309549e0
    • Transparency log index: 146234597
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 81.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2aee5a1a1b6528088fa18eeda9357de0b21f635c341f05af4ad684dfb601d2e3
MD5 a92151156ccaada79c5d35fe2a7def71
BLAKE2b-256 3a6d8fe4618e9ce42e21bd18d1798c4c4c0348951daca015e62a0affdaa9ca45

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-win_amd64.whl
    • Subject digest: 2aee5a1a1b6528088fa18eeda9357de0b21f635c341f05af4ad684dfb601d2e3
    • Transparency log index: 146234595
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-5.9.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 73c67472f8a052522e15fe4c1fe35cd7f37686193452a2cb5d5303780f21a340
MD5 eb14d89659122482956fdc895ab38ad8
BLAKE2b-256 f7c7c5aeed2695f665c5bb9f5781a33b313eb3240311fc5be48719e31756226a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-win32.whl
    • Subject digest: 73c67472f8a052522e15fe4c1fe35cd7f37686193452a2cb5d5303780f21a340
    • Transparency log index: 146234599
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36317c91ae2703ba5415c76bf7a55f6d54a79dbc722f167789f652d5a6b0322e
MD5 1851ec83ea8ae24d1fca5ff5ef63aae9
BLAKE2b-256 1620219d4cd6974043d99d9b1388e09409e450dd167c3c134c2561945a8afe3a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: 36317c91ae2703ba5415c76bf7a55f6d54a79dbc722f167789f652d5a6b0322e
    • Transparency log index: 146234523
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 d120fbb350ec7287c399583dec6c0483ed897bcc099f877b708588ecdbfa75e9
MD5 ca8d0fe2415cc2a21634c3b705b8ebfb
BLAKE2b-256 ae80bd335d4dd792a662c2f1caf582822692db9bc25cdf260d4aeaae3a9f3738

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: d120fbb350ec7287c399583dec6c0483ed897bcc099f877b708588ecdbfa75e9
    • Transparency log index: 146234489
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 2c6fef446ed48d3d0d9a8f2d296f477c5f667bff38bcaa78247c4c7c5b3ce605
MD5 2af97ff661711ffe5b2a4578b525daff
BLAKE2b-256 9d8548d7987f2d648380478f8914d4c7f79039330cae21a14e44e70ee7d25d27

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: 2c6fef446ed48d3d0d9a8f2d296f477c5f667bff38bcaa78247c4c7c5b3ce605
    • Transparency log index: 146234590
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7624ebc619325aa9167476b2889fbee9edbbaf93d77608c1b79868029d82f222
MD5 065a90e9fba181492fb0ea3da02fb6e2
BLAKE2b-256 9251c0e5bdedaffdc534060dbb14759b62cca4a3ab7cbca447d640af2d4d741f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: 7624ebc619325aa9167476b2889fbee9edbbaf93d77608c1b79868029d82f222
    • Transparency log index: 146234548
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 574e6475b8632a1e19cff9f8bcf18ae0d7506f22b1a7640bd5ca0c4c86aa69d3
MD5 b45a0adf7c45d54f5a2dd3786b8f1091
BLAKE2b-256 3f9ba02d2c3d045a2138b0487e624d8a6a1844a662caf25ddeb2da36f61c6d5a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: 574e6475b8632a1e19cff9f8bcf18ae0d7506f22b1a7640bd5ca0c4c86aa69d3
    • Transparency log index: 146234502
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2d1e8610fe233a480cea6a5acf8b67d291cfe854cf5ead867b62e5569b57d849
MD5 4165bf70bd5284c0c6421d1aa406712e
BLAKE2b-256 e648e102efa33753193952166bba69dbb7cc86965a211682ea1037f2caca490b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: 2d1e8610fe233a480cea6a5acf8b67d291cfe854cf5ead867b62e5569b57d849
    • Transparency log index: 146234557
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f69c0bf41e8b7782f7dbf1902a35f1c48a62c9bcb957755ad70ecc6a5ffac6a3
MD5 71f8c125f33c82f210201c0f7be3c949
BLAKE2b-256 74ce0d297ee8c8368a7ad5d9a04f5c60eab6a02bf169026360ff97c6a5c0b966

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: f69c0bf41e8b7782f7dbf1902a35f1c48a62c9bcb957755ad70ecc6a5ffac6a3
    • Transparency log index: 146234583
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2e8dc07459cf45447c2f23ba793125410af9925fdc5ef5ef2aff6f373bb60358
MD5 a3a5274867c61a49d9be1b032402fff6
BLAKE2b-256 be9fbf7c264a778bae2fb8b1b76bbcdc2ee9cae4023e7cabd39e6157ce4ba259

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 2e8dc07459cf45447c2f23ba793125410af9925fdc5ef5ef2aff6f373bb60358
    • Transparency log index: 146234616
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1e46bd11836155f262797fb6e570e958b251ee7a9c6bc708150d1f4e7cd89721
MD5 8dcb9143a223ebc12dfb56443e1be601
BLAKE2b-256 507904a5d285487413f825c5933647f0840f1ee6b06fefa2c9fa34c47ec1a4c8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 1e46bd11836155f262797fb6e570e958b251ee7a9c6bc708150d1f4e7cd89721
    • Transparency log index: 146234542
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e8478b76b301da67cbdeb59b839f913461aa3321a1e56ea12c8cfa43277054d6
MD5 6f21a91e1022213ae80f586d50338d97
BLAKE2b-256 468930a9639eec98552d817328b1f11c60446693a53eeb371286bf36f53033b5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: e8478b76b301da67cbdeb59b839f913461aa3321a1e56ea12c8cfa43277054d6
    • Transparency log index: 146234592
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6e4803b336f787c45be7da6f28a39ce923b6a868271ea4037e7bd4bc8835478
MD5 8b64dd538a4fad07556b052106562751
BLAKE2b-256 1f60f461d2b5117bf442f3b1b206dd2e7d6ae0b81d5ab78b54a0ca5aa5a301c5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b6e4803b336f787c45be7da6f28a39ce923b6a868271ea4037e7bd4bc8835478
    • Transparency log index: 146234611
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db2134d102f5495a7af97e5544c243b8ea9d25ab1c9f4b5ad9145b9fb07f95c9
MD5 596200346810e5763621e8fb60eeea81
BLAKE2b-256 b90719fb3d5f12219d95f3e26d1d6538bd3c24c93719ce8f745d804b147834e8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.11-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.11-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: db2134d102f5495a7af97e5544c243b8ea9d25ab1c9f4b5ad9145b9fb07f95c9
    • Transparency log index: 146234566
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page