Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles f64, f32, f16, and bf16 real & complex vectors.
  • handles i8 integral, i4 sub-byte, and b8 binary vectors.
  • handles sparse u32 and u16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
f64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
f32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
f16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bf16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
i8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
u8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing i8, u8 or f16 vectors, will use the same types for accumulators, while SimSIMD can combine i8 enumeration, i16 multiplication, and i32 accumulation to avoid overflows entirely. The same applies to processing f16 and bf16 values with f32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups.

dist = simsimd.cosine(vec1, vec2, "i8")
dist = simsimd.cosine(vec1, vec2, "f16")
dist = simsimd.cosine(vec1, vec2, "f32")
dist = simsimd.cosine(vec1, vec2, "f64")
dist = simsimd.hamming(vec1, vec2, "bits")
dist = simsimd.jaccard(vec1, vec2, "bits")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming", # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="u8",   # so we can use `u8` instead of `f64` to save memory.
    threads=0,        # Use all CPU cores with OpenMP.
    dtype="b8",       # Override input argument type to `b8` eight-bit words.
)

By default, the output distances will be stored in double-precision f64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller u8 or u16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_metric_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);

    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;

    // Hamming distance between two vectors
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);

    // Jaccard distance between two vectors
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);

    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_metric_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-5.9.7.tar.gz (150.3 kB view details)

Uploaded Source

Built Distributions

simsimd-5.9.7-cp312-cp312-win_arm64.whl (53.8 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-5.9.7-cp312-cp312-win_amd64.whl (78.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-5.9.7-cp312-cp312-win32.whl (51.8 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-5.9.7-cp312-cp312-musllinux_1_2_x86_64.whl (576.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp312-cp312-musllinux_1_2_s390x.whl (306.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl (362.2 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp312-cp312-musllinux_1_2_i686.whl (318.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-5.9.7-cp312-cp312-musllinux_1_2_armv7l.whl (259.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp312-cp312-musllinux_1_2_aarch64.whl (421.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp312-cp312-manylinux_2_28_x86_64.whl (635.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp312-cp312-manylinux_2_28_aarch64.whl (382.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp312-cp312-macosx_11_0_arm64.whl (79.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-5.9.7-cp312-cp312-macosx_10_13_x86_64.whl (85.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-5.9.7-cp312-cp312-macosx_10_13_universal2.whl (140.4 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-5.9.7-cp311-cp311-win_arm64.whl (53.8 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-5.9.7-cp311-cp311-win_amd64.whl (77.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-5.9.7-cp311-cp311-win32.whl (51.8 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-5.9.7-cp311-cp311-musllinux_1_2_x86_64.whl (576.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp311-cp311-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp311-cp311-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-5.9.7-cp311-cp311-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp311-cp311-musllinux_1_2_aarch64.whl (421.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp311-cp311-manylinux_2_28_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp311-cp311-manylinux_2_28_aarch64.whl (382.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp311-cp311-macosx_11_0_arm64.whl (79.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-5.9.7-cp311-cp311-macosx_10_9_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-5.9.7-cp311-cp311-macosx_10_9_universal2.whl (141.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.7-cp310-cp310-win_arm64.whl (53.8 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-5.9.7-cp310-cp310-win_amd64.whl (77.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-5.9.7-cp310-cp310-win32.whl (51.8 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-5.9.7-cp310-cp310-musllinux_1_2_x86_64.whl (576.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp310-cp310-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp310-cp310-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-5.9.7-cp310-cp310-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp310-cp310-musllinux_1_2_aarch64.whl (421.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp310-cp310-manylinux_2_28_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp310-cp310-manylinux_2_28_aarch64.whl (382.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (226.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp310-cp310-macosx_11_0_arm64.whl (79.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-5.9.7-cp310-cp310-macosx_10_9_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-5.9.7-cp310-cp310-macosx_10_9_universal2.whl (141.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.7-cp39-cp39-win_arm64.whl (53.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-5.9.7-cp39-cp39-win_amd64.whl (77.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-5.9.7-cp39-cp39-win32.whl (51.7 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-5.9.7-cp39-cp39-musllinux_1_2_x86_64.whl (576.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp39-cp39-musllinux_1_2_s390x.whl (305.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl (361.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp39-cp39-musllinux_1_2_i686.whl (318.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-5.9.7-cp39-cp39-musllinux_1_2_armv7l.whl (258.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp39-cp39-musllinux_1_2_aarch64.whl (421.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp39-cp39-manylinux_2_28_x86_64.whl (635.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp39-cp39-manylinux_2_28_aarch64.whl (382.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (215.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (270.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (226.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp39-cp39-macosx_11_0_arm64.whl (79.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-5.9.7-cp39-cp39-macosx_10_9_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-5.9.7-cp39-cp39-macosx_10_9_universal2.whl (141.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.7-cp38-cp38-win_amd64.whl (77.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-5.9.7-cp38-cp38-win32.whl (51.7 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-5.9.7-cp38-cp38-musllinux_1_2_x86_64.whl (576.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp38-cp38-musllinux_1_2_s390x.whl (305.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl (362.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp38-cp38-musllinux_1_2_i686.whl (318.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-5.9.7-cp38-cp38-musllinux_1_2_armv7l.whl (258.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp38-cp38-musllinux_1_2_aarch64.whl (421.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp38-cp38-manylinux_2_28_x86_64.whl (636.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp38-cp38-manylinux_2_28_aarch64.whl (383.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (227.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp38-cp38-macosx_11_0_arm64.whl (79.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-5.9.7-cp38-cp38-macosx_10_9_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-5.9.7-cp38-cp38-macosx_10_9_universal2.whl (141.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-5.9.7-cp37-cp37m-win_amd64.whl (77.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-5.9.7-cp37-cp37m-win32.whl (51.7 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_x86_64.whl (575.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_s390x.whl (305.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_ppc64le.whl (361.5 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_i686.whl (318.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_armv7l.whl (258.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-5.9.7-cp37-cp37m-musllinux_1_2_aarch64.whl (421.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-5.9.7-cp37-cp37m-manylinux_2_28_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-5.9.7-cp37-cp37m-manylinux_2_28_aarch64.whl (382.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-5.9.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (216.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-5.9.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (271.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-5.9.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (227.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-5.9.7-cp37-cp37m-macosx_10_9_x86_64.whl (86.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-5.9.7.tar.gz.

File metadata

  • Download URL: simsimd-5.9.7.tar.gz
  • Upload date:
  • Size: 150.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7.tar.gz
Algorithm Hash digest
SHA256 7612f7087aee7c5415385089080fdcdd3c52b3988e33cdf1f779f26d8ab54ac8
MD5 9c8c72cf52151b0a18d44983c7ab58cc
BLAKE2b-256 aecaaa5f0b463451a559f0ecef025d1ee6cc65d43fbdc6120df572d392f7ad39

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7.tar.gz
    • Subject digest: 7612f7087aee7c5415385089080fdcdd3c52b3988e33cdf1f779f26d8ab54ac8
    • Transparency log index: 145063362
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 25ab98e9de3322a5adc29446557e8770d45c2e42d7ab288f04c4437df5c9ee30
MD5 c4a901a1e0cd9f62f23f1df2ca84a121
BLAKE2b-256 700cb82e863f8eed3af0469efda54f58dc868c17ce047f5bf921d2fe1e4c163c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-win_arm64.whl
    • Subject digest: 25ab98e9de3322a5adc29446557e8770d45c2e42d7ab288f04c4437df5c9ee30
    • Transparency log index: 145063550
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 78.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 49527d4ec509d08157dfab5dc2ab66398e086d56bb6a6a9b640fd107c0e7f736
MD5 7b27924cf37b7e5c31a21cc1ba4ad682
BLAKE2b-256 7a2c6e1a72841f26091c54538bb9cca5688e0a11d893235950a4437c5f19e9b3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-win_amd64.whl
    • Subject digest: 49527d4ec509d08157dfab5dc2ab66398e086d56bb6a6a9b640fd107c0e7f736
    • Transparency log index: 145063401
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp312-cp312-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 8c35f8f122ab33f325d7818fef88e21159d34f224e9a9c40abc4a60f986cb1aa
MD5 d168426816fd6add8916a4b13dd26956
BLAKE2b-256 1154da5a51b7461d241dfb4bc18c09bdbddf5d9fe64fa23ad76ba0194fde21b3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-win32.whl
    • Subject digest: 8c35f8f122ab33f325d7818fef88e21159d34f224e9a9c40abc4a60f986cb1aa
    • Transparency log index: 145063449
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 119c4395e1fad9f1da5d40654f77b3501afb8576e310e0c568e7b8c85a46432f
MD5 802dc6ab8a01d6c9e3410de8e0a16ed7
BLAKE2b-256 aabec0125d3d7cf48df924548f2ce313fe0f8d3fe45a3fe4a10a92f8725b0467

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: 119c4395e1fad9f1da5d40654f77b3501afb8576e310e0c568e7b8c85a46432f
    • Transparency log index: 145063373
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e48ce99ba425eb32935f5ca8b7cb5cfaeeb8f8b2642827ef09181595a401ca6b
MD5 7fbc445d8822afd5248419dd122fec16
BLAKE2b-256 516ac84509566dbf714ad3c1bca9063b61b24b66a0d49a68706336773bded136

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: e48ce99ba425eb32935f5ca8b7cb5cfaeeb8f8b2642827ef09181595a401ca6b
    • Transparency log index: 145063452
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 004d7d05d06fd53ba24c258bccd5524cf17a162c19948a62035dbb8f8c927159
MD5 0be2cd3c1dee61df8aadc82941cafec0
BLAKE2b-256 5529986933605edc00e0a8fa7d6dd60b5daa02dd808e709597627d786e1a8fc0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: 004d7d05d06fd53ba24c258bccd5524cf17a162c19948a62035dbb8f8c927159
    • Transparency log index: 145063515
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 03c060fbb718c21e715ef485b27d3068d95cf38d3681d367f5bd3ca56d0a2a8b
MD5 303e59cf0994ec0a68aff9f653f7c4f4
BLAKE2b-256 aee8bd432762c4b3588fc106ab08638de00da17a4bc98ffed6642a630be0569a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: 03c060fbb718c21e715ef485b27d3068d95cf38d3681d367f5bd3ca56d0a2a8b
    • Transparency log index: 145063489
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f4ace050efe35d911b2f73c8a5493296478de6d041cdd751df3947dd51425449
MD5 ecb2c0a46fdeaaf5bf7fff75bc6e21e5
BLAKE2b-256 45cc9eb1d6c7a022721d5d6cf7f14bfd08d3732a2975905746254329679bd774

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: f4ace050efe35d911b2f73c8a5493296478de6d041cdd751df3947dd51425449
    • Transparency log index: 145063508
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4f49307f6e00bbd2694ccfeaf3726827fa53a9dd9f57707543633cf8974a897d
MD5 c0cc92aebda2d055f9368606d0077b0d
BLAKE2b-256 770d256dd6958e2553af5a8757223d05d51d23f22fb520f8149b52036bc73e58

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: 4f49307f6e00bbd2694ccfeaf3726827fa53a9dd9f57707543633cf8974a897d
    • Transparency log index: 145063545
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3a1224a0b85c642cfed341c6626e4a7c6d2d6bc5a290c312a041fd030f98c835
MD5 f39f761494a4b69788d00eee8c3637f0
BLAKE2b-256 c1b3d0e6f4c07906db02a19071a739f0ada0d798c9e8df95845ad1629a761dc5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: 3a1224a0b85c642cfed341c6626e4a7c6d2d6bc5a290c312a041fd030f98c835
    • Transparency log index: 145063371
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a5564348dec3f08de79a0851d03d744cff7efd0e10c5e410e89663e56a890f31
MD5 255e7b4b246080fc908ebfa9a0ac8d42
BLAKE2b-256 8d3d8735ed788c176fdfc624a434abd771925e02dbfe4546c9c1b0407a4fccf8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: a5564348dec3f08de79a0851d03d744cff7efd0e10c5e410e89663e56a890f31
    • Transparency log index: 145063471
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7ba99fe25291fa20b71da409607c8ba97624f85d0bff6eb1e02d7f68546334fa
MD5 b54268d2033a2c7154c1e6a58da0a2a0
BLAKE2b-256 948663543a6e988ad3be1e2eb133957b876cc3456b81961781da94039a28e878

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 7ba99fe25291fa20b71da409607c8ba97624f85d0bff6eb1e02d7f68546334fa
    • Transparency log index: 145063479
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1cdfd52cf44d5c3d1f9fed02b3724de790f7f34a7ba9e9368241e4385af84fd5
MD5 ec8c5386dc451fb4e9157e7eececc268
BLAKE2b-256 3b61fc0662f8508afc476736e2d96c788bdbdf031947c168c35793e473bd92c0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 1cdfd52cf44d5c3d1f9fed02b3724de790f7f34a7ba9e9368241e4385af84fd5
    • Transparency log index: 145063433
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5559b485acd6b90cce94cf5e8463f4ad345ef8551b7db40f9dce1b2dfeb4f1b6
MD5 3821717bf7e25922429ac49f3f99ad2f
BLAKE2b-256 83384dc7cd78c9e63960bd66396ede79dbb0d777a3eb1a2376b64b75388812d7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 5559b485acd6b90cce94cf5e8463f4ad345ef8551b7db40f9dce1b2dfeb4f1b6
    • Transparency log index: 145063481
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84647c7d83cd31d9755af0aa7d6e73b842364b3b19b76af01ea69246c09b11e6
MD5 ff5a6de3569a48ae48dd12ba15b08379
BLAKE2b-256 75379c96b73d8010a8f5e0e518a2adb8e40d6c8b266f1ddfce36afe6a45d5226

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: 84647c7d83cd31d9755af0aa7d6e73b842364b3b19b76af01ea69246c09b11e6
    • Transparency log index: 145063517
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5dbe91bf1035d95db8d93f9ffa1b037945477122c1d49de690a9ac2134201208
MD5 5292c23d106def471122903084110b5d
BLAKE2b-256 0b0c59f9854804c23f228dd41050a9e7a8e6aebd09a6910fccc159730ea0eeb9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: 5dbe91bf1035d95db8d93f9ffa1b037945477122c1d49de690a9ac2134201208
    • Transparency log index: 145063486
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 aa859dd9af0a2363bda031fafc96a3580cc6607c6e9b7a73842d5dbfe1f3b3ea
MD5 25daaaea61922515847e9b522b7056ef
BLAKE2b-256 e9d3f74eaa65bd57ea1591c5bca37d4bfcd298f58035fe7b4cfce5319d3c21ca

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: aa859dd9af0a2363bda031fafc96a3580cc6607c6e9b7a73842d5dbfe1f3b3ea
    • Transparency log index: 145063392
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 24cf4d7093e92a1f0be609a06361f87d504efd66f1f73d4433079e9981389b46
MD5 f26405ba9e9ddf9b506271429a537ac6
BLAKE2b-256 dcfce1fd7a51655f85e55e07018a3778e5d3f52b86a8421a0612ed2106cef44d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-win_arm64.whl
    • Subject digest: 24cf4d7093e92a1f0be609a06361f87d504efd66f1f73d4433079e9981389b46
    • Transparency log index: 145063519
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 77.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 90f03656b96127a0ae4aef7038590663a7f40a3eeb219f63ba3cf9aff19f316b
MD5 8544ba11ce2922ff6c9de27f6801210e
BLAKE2b-256 73299003bef66377ce19ba3f746f1b8eb005b0f264720c932fd30ffe58d3b7bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-win_amd64.whl
    • Subject digest: 90f03656b96127a0ae4aef7038590663a7f40a3eeb219f63ba3cf9aff19f316b
    • Transparency log index: 145063484
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8ad9f94458e94d9263d36f98c2fdc022e0c3215ca57526cbf9dd6aa309eb87ba
MD5 e96640736b412bf92fee44a7fff16b13
BLAKE2b-256 d038ecf69832b0c63b59943c7e74994df50a0e736483dd140151484f821794d9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-win32.whl
    • Subject digest: 8ad9f94458e94d9263d36f98c2fdc022e0c3215ca57526cbf9dd6aa309eb87ba
    • Transparency log index: 145063437
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b17ae04b8b0ad909d92fa6411583a4b99788034a619a088e60a3e7b8ae85a81b
MD5 54e2ec7c1cdc52919d8377e0a854457b
BLAKE2b-256 7a7858c766548a2587282b7c192b3ab77b00510477005fce7effee667a46335c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: b17ae04b8b0ad909d92fa6411583a4b99788034a619a088e60a3e7b8ae85a81b
    • Transparency log index: 145063511
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 dc7e3170edda3b119b6ed03422d11ba546583564a7314db28e72b3c1acbcd6d1
MD5 4e543a1bbe09c0eac3051f3f57ce5351
BLAKE2b-256 8c7c846c44c581f3ae9da062c9409a15e4aae7c77b5e0e7427cb4e5d462a0463

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: dc7e3170edda3b119b6ed03422d11ba546583564a7314db28e72b3c1acbcd6d1
    • Transparency log index: 145063414
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 529c67718ba0db6da3c082d1249815063c67e3938884bc3c432e85dbd06a6c03
MD5 9544cfddfad5209e09a535fefc672550
BLAKE2b-256 92fcccb8f9765585f126b8092c4a0f9c0798ec211e3264ef3c327d6c5a6b1d69

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: 529c67718ba0db6da3c082d1249815063c67e3938884bc3c432e85dbd06a6c03
    • Transparency log index: 145063440
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1553c287eb6be6a3fe5688affbdf92fb5a18809512f4c711bbb0dedf11957e63
MD5 40777e28bcc0f34432bb159c77bc492c
BLAKE2b-256 c845ee03c5dd0c32c6569fa1aaacb089fc34ab9ed49aaed2649cc6a669e8746f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: 1553c287eb6be6a3fe5688affbdf92fb5a18809512f4c711bbb0dedf11957e63
    • Transparency log index: 145063469
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f7e94bc9295eb2538cdb85887c21864121a9df715ecba05455691801be14ac65
MD5 40eb63d98d11c5ee8e38e0258b915da7
BLAKE2b-256 ccfc55fdab09bb3a0a422ef15437146a9b937fea6d29cb42f9c888e80c57f7e6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: f7e94bc9295eb2538cdb85887c21864121a9df715ecba05455691801be14ac65
    • Transparency log index: 145063534
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8270d0f29f1db2989e8a55929557ca2b97650a685353774ddd6306c6422a3568
MD5 966dabc4b5361175ac898842e2dab4b4
BLAKE2b-256 5f50e110d04bf7e26dc6b8c85aa875cb6c70fcef99396a8d75652ede19126dea

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: 8270d0f29f1db2989e8a55929557ca2b97650a685353774ddd6306c6422a3568
    • Transparency log index: 145063430
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2019ee8ef83ffce3f7bd980264b89fb29059f2e6e4d447cf640a41f12b6c1242
MD5 d4d976b6680af0b5605bc94a5748dbb6
BLAKE2b-256 84f1663d954d03703ba62368ec10925dc5369cb0ba3c4b67d9cdd623ad970640

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: 2019ee8ef83ffce3f7bd980264b89fb29059f2e6e4d447cf640a41f12b6c1242
    • Transparency log index: 145063542
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1f1e2b12b0a31656c6e42223fcddc90990f54f2c2f40a065bdff897a36edc064
MD5 80490d27e80568a6a51f4f98c6d34c5b
BLAKE2b-256 90eeff82db50854f0724fb2b97ce16551618500fe131379e0fc570bca1fde0b7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: 1f1e2b12b0a31656c6e42223fcddc90990f54f2c2f40a065bdff897a36edc064
    • Transparency log index: 145063443
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 da3fd865ab7287b68af638a7d54a46e9b34832864f603d856b190126eae7025e
MD5 e1091f4051d7f56431f7444bad3fae62
BLAKE2b-256 1aef4c45b5c3ae363e408de83adb2953c15688565ee28df7d8ad3d8e0b33d5bf

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: da3fd865ab7287b68af638a7d54a46e9b34832864f603d856b190126eae7025e
    • Transparency log index: 145063427
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 606ce52cdae2643e441a887611ec9f9db0cc3e4f5f90e6e5fc1a659bb9188069
MD5 f9cf8301ab3918f47587cd1ffb0a2dbb
BLAKE2b-256 07d217d584d1976ba15d077188ca7a23001b84c4ff448840882d369b66df1e3c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 606ce52cdae2643e441a887611ec9f9db0cc3e4f5f90e6e5fc1a659bb9188069
    • Transparency log index: 145063398
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a42c3f00f9c77716d6fe9be1f6d2ae88342a0696dd3f5a2a353b00eb53dfca1b
MD5 d5a099c213fff105726acb6f98d69bcd
BLAKE2b-256 f2b37422be4af7989c92fecc64cce2003cafdf4bf00572d1f9debb56eea36057

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: a42c3f00f9c77716d6fe9be1f6d2ae88342a0696dd3f5a2a353b00eb53dfca1b
    • Transparency log index: 145063445
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4497ae34f47de3574ec76f2efcb32270f9e7f22a506800adf6b2e686b9104188
MD5 7cdabee3d43917e081c66a54a0fc2006
BLAKE2b-256 f3a2f6ef1eac59e3e429e77875f436e3bfc8ec8906c421ca90615a3b65adbb0c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: 4497ae34f47de3574ec76f2efcb32270f9e7f22a506800adf6b2e686b9104188
    • Transparency log index: 145063488
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 716782eca1ce1dcf33ad978c052b6cf1af2a0a78a4570a299a9bb47b1ea75e5b
MD5 16440c8a260fbe08e8abac8fd5c5f470
BLAKE2b-256 0a0a04c38360eb8d84ccf0bb116aa0816a82cf9a7cc8c8743b8c59cf8d828bf8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: 716782eca1ce1dcf33ad978c052b6cf1af2a0a78a4570a299a9bb47b1ea75e5b
    • Transparency log index: 145063456
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4c4ce63e53ab245601ba812a8d573ec0225256407de1d1a9f7c08b616965d94c
MD5 a7b02ed44fb8cead5385e53785948a5b
BLAKE2b-256 7ad0d8bffca6300571ebc7631e6119a89b6cb005a834c94a0f217f15ad5cbbcc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: 4c4ce63e53ab245601ba812a8d573ec0225256407de1d1a9f7c08b616965d94c
    • Transparency log index: 145063380
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 f703c4a54a4442e7ca8459ed14aa4e49421d53fedaa84874880511a871e69761
MD5 a6f7b5735f3af4372193b3843443752f
BLAKE2b-256 b6d57061aa1a88ac28dae6e75dc5c3bbbc3bbc348ae4c7b2139478be04b41541

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-win_arm64.whl
    • Subject digest: f703c4a54a4442e7ca8459ed14aa4e49421d53fedaa84874880511a871e69761
    • Transparency log index: 145063405
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 77.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3647f2bb6554c95c1ae852a4dbf7ace4873523c51d9ec13d2a55f0c9dcc3697c
MD5 035b6cb23de971e4d62a4b30c6c6b2d8
BLAKE2b-256 f780a7ff2d6a67a9674ab7b930ce843156fb9a929ca6b1fb47517c5198bd436e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-win_amd64.whl
    • Subject digest: 3647f2bb6554c95c1ae852a4dbf7ace4873523c51d9ec13d2a55f0c9dcc3697c
    • Transparency log index: 145063467
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 51.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 629e00a4ab649111f4132af9cdf294b3ea8169b31e40a2e1bc59c0ccabc0b8a5
MD5 8cc848c55b80b03dc0e20fee3da6a405
BLAKE2b-256 216b760fadb11a2c6ee788c0c42c56d8b717b2ac34550c185b43d8c8d4064ea3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-win32.whl
    • Subject digest: 629e00a4ab649111f4132af9cdf294b3ea8169b31e40a2e1bc59c0ccabc0b8a5
    • Transparency log index: 145063498
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c7ff96ab0e2bed6e8af747179c5c6fa1ed45e17f2f43dd95d45034cb752ff812
MD5 a2c64cef2561f65b5f77a8404a9fa19b
BLAKE2b-256 b8d4c23aa47c29ac5ca76dc9fb4f55f2996aee43ffe2b0d5df11365e0d7d8ab5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: c7ff96ab0e2bed6e8af747179c5c6fa1ed45e17f2f43dd95d45034cb752ff812
    • Transparency log index: 145063379
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 389f4f7262c869a520136c0c5bb2c785b8f75c99739fc6c807bbf8dccaf0b79e
MD5 8e8add4289923433d5a868e92e7fe603
BLAKE2b-256 0309fa886c82275e69b9e82bb7869b99ff7273b86fce8f4eff3cb6b789621e7f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: 389f4f7262c869a520136c0c5bb2c785b8f75c99739fc6c807bbf8dccaf0b79e
    • Transparency log index: 145063493
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 92b67f87872f44ff1196238841fd50ca92ea7e199dc767707b544b3cccbc518a
MD5 46ff62535b4dd8ece9e35d0095345aaf
BLAKE2b-256 4019fb68373b9ec614b4fbce03ce245178acd9630a981345bf581750c1e1ab92

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: 92b67f87872f44ff1196238841fd50ca92ea7e199dc767707b544b3cccbc518a
    • Transparency log index: 145063447
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5b7ecc290a8e1764089729b0d459345381fbecfecd8aea166e934b183290944e
MD5 0f1600ab497f62be91545a6281297268
BLAKE2b-256 f32ddf8c5acbd7c666bf0b69ec800176759fd14e9dd141a8c1a82fa28cb08203

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: 5b7ecc290a8e1764089729b0d459345381fbecfecd8aea166e934b183290944e
    • Transparency log index: 145063494
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 23740c8f5924ee970c2d5343dfc8b2c8e99377ff824c3ba35bbb612ae71214c2
MD5 ab41a37ac55d5e6172d60bfccbb94cb9
BLAKE2b-256 91814e9dba6e1a39c4c1d24393200df49b6f081c87cca35675fb555a9615cd55

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: 23740c8f5924ee970c2d5343dfc8b2c8e99377ff824c3ba35bbb612ae71214c2
    • Transparency log index: 145063369
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cbf42c563b91c275c006a5a61a95c2e98ef5b7a53588bee129a6d5aa925f4b6b
MD5 609e769e1fee7547d31b2d837be81eff
BLAKE2b-256 3ac18d5751a92128b04972ecde72fc44a72820d95f4c5e7defa1e5dc91deaa0d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: cbf42c563b91c275c006a5a61a95c2e98ef5b7a53588bee129a6d5aa925f4b6b
    • Transparency log index: 145063450
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e0e0016a79a811fe7f9e979b7d2407735787974b57ab6579a4c74f6b7512afe2
MD5 cd08b75ea4d2c04d253ffa25d7447835
BLAKE2b-256 f599f6b49477131cf057bb7ac6eb4621f73cd7c8729cd8822ec5d7e2aaeee8d6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: e0e0016a79a811fe7f9e979b7d2407735787974b57ab6579a4c74f6b7512afe2
    • Transparency log index: 145063480
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 512209d9be3d39782c68c3be6e8ccb003ef7ab239454009bf8127578c8762a1c
MD5 9f177fbe5b64b6ce2072c0cd514c0a6d
BLAKE2b-256 8744c5eeca3ed663730b8653881ef621e6b694be25fc36de4cbb230a4c4186ae

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 512209d9be3d39782c68c3be6e8ccb003ef7ab239454009bf8127578c8762a1c
    • Transparency log index: 145063366
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e5af1d7b085e5da287c3c6bfd77192093d2f56632047f7b95cbf9f651348c134
MD5 c7ca937a25e02f6bc344186153c393c9
BLAKE2b-256 0908b2e5ce42c6ffec36f1f1238bae8f87f001ac398a8971f02dd438c611e74b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: e5af1d7b085e5da287c3c6bfd77192093d2f56632047f7b95cbf9f651348c134
    • Transparency log index: 145063523
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 51567ebac7039601522170fd9036f8ee4f50bc864ca33dc5ec84612c257a5398
MD5 4e7a0e0c5c295bb6f5ee4fce1775a7d1
BLAKE2b-256 5909e3233e7d449da80dbca8246c22f23dff1f437a3ae3598ccbacd0270974fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 51567ebac7039601522170fd9036f8ee4f50bc864ca33dc5ec84612c257a5398
    • Transparency log index: 145063527
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4f38b1c685095b046ba630856297e1f3c149cbc6765dacc3dd234475c72b4620
MD5 3f4aea1425c9fb7ae2daac567441ee68
BLAKE2b-256 2c6e61bb2a5f62e02761426af6ef80411120727114fac8561558b5bfa0d3fe0b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 4f38b1c685095b046ba630856297e1f3c149cbc6765dacc3dd234475c72b4620
    • Transparency log index: 145063410
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f8c0c053102822524e388346e8928a884a98708fdaa752543aa00f4e4d4753ea
MD5 12821a8ba49eaa648864ef91d9a0dabd
BLAKE2b-256 e77dc6581871f59ecc683ccbc272655377affc6788ea08b83a741a4712d90b6f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: f8c0c053102822524e388346e8928a884a98708fdaa752543aa00f4e4d4753ea
    • Transparency log index: 145063394
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75d637166b74df2998b11b7f5b51bbf31dae027e13e446505c6b29abcca4c340
MD5 ac5c3dabf61dd37b0ada4e2540cf7b29
BLAKE2b-256 73715c51cb6169fdaf5d08d84e182bc18704b997842051265ca8c65236c5f01b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: 75d637166b74df2998b11b7f5b51bbf31dae027e13e446505c6b29abcca4c340
    • Transparency log index: 145063509
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 938c3131ba92d9354c8067ce8415c918348eed60fd97bdec926c7878f3943d38
MD5 5870965a7d5445edfd257214109b6c52
BLAKE2b-256 2043df566c33d86dcd632800babb92a91334341d6ba468e4797cc702a3956502

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 938c3131ba92d9354c8067ce8415c918348eed60fd97bdec926c7878f3943d38
    • Transparency log index: 145063514
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 53.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 760313023711b7a4d1c5969e0bdd933502a4639f150b324055571a80f11fceb9
MD5 d0e066f93a3a370553a8d9bc3a417d55
BLAKE2b-256 779a293d5af61c1370178c409d25bcbfeaefa19566c9140622a394e83b4a336f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-win_arm64.whl
    • Subject digest: 760313023711b7a4d1c5969e0bdd933502a4639f150b324055571a80f11fceb9
    • Transparency log index: 145063549
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2eb4332914095b935a725fa61493d8c1088ba53ae43c69cf514225a4de38d8a8
MD5 25095e4aee216d2810724bd07f3a06e0
BLAKE2b-256 a71088b73180897ca075c6cb0c6a22a9e02a834b15eb746e62b6241251a87dd0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-win_amd64.whl
    • Subject digest: 2eb4332914095b935a725fa61493d8c1088ba53ae43c69cf514225a4de38d8a8
    • Transparency log index: 145063547
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1e868e6dab93a1f0493e549e25d94948da1ce46f990cc84404421916024f3ab3
MD5 82e72f3a89ff9114a404f8593f9d84a9
BLAKE2b-256 9deda7081d5d68007783c05a3da7436cfec294e5996be3f73777e7adb05a0f9e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-win32.whl
    • Subject digest: 1e868e6dab93a1f0493e549e25d94948da1ce46f990cc84404421916024f3ab3
    • Transparency log index: 145063435
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 36cf86ca1e5f3ad91c9faa48db6835bbdc3284bad2d9d280a0e9bb1fcd781423
MD5 df9ec81e2048c1ad76fdc6ac75612d86
BLAKE2b-256 c08df9309f19ac397163e1093dc940bde536a5506f00b7c477c1a3cbd90d6f42

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: 36cf86ca1e5f3ad91c9faa48db6835bbdc3284bad2d9d280a0e9bb1fcd781423
    • Transparency log index: 145063444
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 49b9bc13ae251bdfdac6f527d37746d7ca411340d702e2e3736920f759201ae4
MD5 1620e34e2744b3259c4ef20cf1ac2aac
BLAKE2b-256 301d540e6ef4d4ff197b32936f6f872ab35cf5ee2c64daef971c6a162a4e2903

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: 49b9bc13ae251bdfdac6f527d37746d7ca411340d702e2e3736920f759201ae4
    • Transparency log index: 145063397
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 67bb890385a765043ec092b5bdf2336df857eedbbae396d288aea07b54842409
MD5 993ffbd7188bcfbdf75dbfa4ab8fc67e
BLAKE2b-256 cf12702f032cca1bb5221292e53592814e7e0170c519501a747dfa350b2bf5c5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: 67bb890385a765043ec092b5bdf2336df857eedbbae396d288aea07b54842409
    • Transparency log index: 145063463
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2dec5916eebb83a3eb66bc596d68398f3b8f7c3c745c2d6ee50fefe3e419f5fa
MD5 6df56797a1c3029eb11bee40d5b799b6
BLAKE2b-256 b8bb99d591c57a84dd4c1d79ebf7e5d7b2d75ae2cb51a0e43f99891569537779

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: 2dec5916eebb83a3eb66bc596d68398f3b8f7c3c745c2d6ee50fefe3e419f5fa
    • Transparency log index: 145063459
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 8912ab45874d6f4eb4805c369380afebcfccf5944211d96d40f387c00cdc5bf5
MD5 a3694ebc8574365587cbeb0a2e7d7edd
BLAKE2b-256 4c24a679db16883f4725a2dd07b15354143e637ad7cd994cfc24c9b05325b4e2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: 8912ab45874d6f4eb4805c369380afebcfccf5944211d96d40f387c00cdc5bf5
    • Transparency log index: 145063416
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1df7750149c5762070506bc54000233f3328ea78a2287cd4af065d8426d3ab5f
MD5 a10a56e3b3d7ffba081c45c07239f836
BLAKE2b-256 74939351bb03841d9a3e845ce82005ba79a22cf3eb160193188e07b98effd9bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: 1df7750149c5762070506bc54000233f3328ea78a2287cd4af065d8426d3ab5f
    • Transparency log index: 145063502
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f5449609732d2ab785f273069bcde228d68b9d168db30c85a006d8d6d01f83aa
MD5 283504b75aa6bd218b98751eb89c156e
BLAKE2b-256 7b7bfb314bf6405f41ab91a6a37b3358206d9dbf273b11e67bd5968caa510651

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: f5449609732d2ab785f273069bcde228d68b9d168db30c85a006d8d6d01f83aa
    • Transparency log index: 145063375
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 42b92127c1c5a01ea8aa54b309f4a137e55660beb9706145bc8be51aa70abb04
MD5 d30dc8c4aea47b0cbcc591acf87751c7
BLAKE2b-256 86caa69de1e8878d416f25da7864215adc603edcc64c4bc5860cb5e29853d9a4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: 42b92127c1c5a01ea8aa54b309f4a137e55660beb9706145bc8be51aa70abb04
    • Transparency log index: 145063541
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 be6e79473daeca18ba355d0296b8202d7602c7cc5d674ecc5e2b665530c5163e
MD5 ed0b3511b74db922f6e9a8fcd086d2f4
BLAKE2b-256 2be8687bd953a1a0457bf027d5e95b71471b13fca6184e7b1ce914eb84347c9f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: be6e79473daeca18ba355d0296b8202d7602c7cc5d674ecc5e2b665530c5163e
    • Transparency log index: 145063389
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7e991d112f061a106ee76786080b1316567e31dddd583cac331921eaf377b43b
MD5 b2ed20837417db591012990dd6d99a3e
BLAKE2b-256 9820e71b71bfa7c9ef66bd747471a80cf19a4ed3cc85a40963fc418cbbc72a55

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 7e991d112f061a106ee76786080b1316567e31dddd583cac331921eaf377b43b
    • Transparency log index: 145063483
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0c9c6b52460791ee39143aef8e99be10e0adc934bfdd22258ec121bfa385e26b
MD5 36e19b8caba240d8defbd6383ac66916
BLAKE2b-256 d897209d9de5cd29ccbb20b09ab3cd276098b85a7b7b61400f4be9a7fea1fede

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 0c9c6b52460791ee39143aef8e99be10e0adc934bfdd22258ec121bfa385e26b
    • Transparency log index: 145063526
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 046b0a8e2124d99c72aa0bb1faaa6994c9877707cfae9d4edcb92bacd2e18d03
MD5 3251ee5cd22fc3107df5273bb96c76cd
BLAKE2b-256 2172efbcc77b13a8c649e56ad2a45f541e3dc1a4f87c3e068e6f364d970e1eba

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: 046b0a8e2124d99c72aa0bb1faaa6994c9877707cfae9d4edcb92bacd2e18d03
    • Transparency log index: 145063495
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 383ec8b0da899193280269474ee13b2393a5312da8d5a00c6d2241f00e6011a6
MD5 a8aa70429afa3178313adf76f9672112
BLAKE2b-256 a1d4cbfc1d1d5626d6c1d22a3203ebaba58932691ef038156d9bc807a7f542ef

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: 383ec8b0da899193280269474ee13b2393a5312da8d5a00c6d2241f00e6011a6
    • Transparency log index: 145063540
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cdd2eb4aaea4295dceeee019948d5cbf03b436e02db4c725762b3a8f84eeedd3
MD5 e85c55a3f7e4419a31a5b600040c0f57
BLAKE2b-256 aa4b31e5de120f8d337ef07dd13fcff8c27d7e9d6bd807325333f31a66dbfecd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: cdd2eb4aaea4295dceeee019948d5cbf03b436e02db4c725762b3a8f84eeedd3
    • Transparency log index: 145063537
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 695ce472cbdb0bfc76f724f4cc45537bb9b47e5dd56f0204a3044c0c59f09630
MD5 5f0d5d0f2acc990edeb6ece3037c10e4
BLAKE2b-256 f5d07540ffa882d3584aa9e60bfbd42c4fd34053d81a1f5edec1229297049720

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-win_amd64.whl
    • Subject digest: 695ce472cbdb0bfc76f724f4cc45537bb9b47e5dd56f0204a3044c0c59f09630
    • Transparency log index: 145063496
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bc884c797cbcd02b2002d96dfd892d61e03c54d49f62014cb81e1f6174bc7594
MD5 e5f89dd695b14d283fba5966248fc00a
BLAKE2b-256 8d848325d0e218f3fbc4df8ce0a9de6eb1787f4d61a36fc48fd067a3e6ea0178

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-win32.whl
    • Subject digest: bc884c797cbcd02b2002d96dfd892d61e03c54d49f62014cb81e1f6174bc7594
    • Transparency log index: 145063441
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 add53369966db2087f8d18aadeaf844480f1f8a53ba05d59306b83b05082c7b8
MD5 1035f29b3d5bca93c00cdfb155ed6b02
BLAKE2b-256 269c222993b52643a964f04a6b7f02dcfd3be1c3ee246e69b2b7cfd170d43400

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: add53369966db2087f8d18aadeaf844480f1f8a53ba05d59306b83b05082c7b8
    • Transparency log index: 145063468
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 be5c6a747ead4b68634dfd7fc38ab3488fbdd5ead5ea68042644e6408be8364e
MD5 128250754b4db1b815aa56a872f3e3c4
BLAKE2b-256 acb7e7158102c0591772a7da79a0d8dc68e4280ff0e2e04a802e91fd240ee7d4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: be5c6a747ead4b68634dfd7fc38ab3488fbdd5ead5ea68042644e6408be8364e
    • Transparency log index: 145063453
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 bbaba24ffc5a27853c7a295318b309a6486c4585c2015936f7693114181a8ca6
MD5 eb4c4e63f0bf6d2b3ca66a8f0e581684
BLAKE2b-256 14afdc10d5ed6499a476466208a0be53e79199ffdf1640eee2d484f785c889a9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: bbaba24ffc5a27853c7a295318b309a6486c4585c2015936f7693114181a8ca6
    • Transparency log index: 145063475
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ae812b06784791b3cdbf5690058f0d20b48dfca50e606fa647361229e00b5f9d
MD5 b88fda4eb54e49d37794f7165810f3c9
BLAKE2b-256 a5374966e9565dc965e8c221c7fe20b95bc9e457791d2e2b95b3e3e9e078786f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: ae812b06784791b3cdbf5690058f0d20b48dfca50e606fa647361229e00b5f9d
    • Transparency log index: 145063535
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 049e6472a6c8c667ec02328747acabbb9e17d543d15147fc9ebd56ddd94457be
MD5 bece448a006c47cfe5ba69b9e5e6ff38
BLAKE2b-256 3c5aafce64080242a5ab38e4580db5d45bf809965b4b68e3499c93083a5e8701

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: 049e6472a6c8c667ec02328747acabbb9e17d543d15147fc9ebd56ddd94457be
    • Transparency log index: 145063385
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 fa214449499a02ff3a37173a53984b59f8915e31e9f2ae1a0e837c8a3c2def5b
MD5 6c638f093bbde71600e93e22cfd84b31
BLAKE2b-256 960ed6cc527ca0d4e61782991f5d142f34315e5706dd9aa5fd44ac4fb39820f4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: fa214449499a02ff3a37173a53984b59f8915e31e9f2ae1a0e837c8a3c2def5b
    • Transparency log index: 145063532
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6e8c93fd9d488fe3cc6ebf8de47473f41c7496b3781c6af1d2d9235dd4480f5f
MD5 f368ad1e15c346821814795916ef82c8
BLAKE2b-256 9b0c5c8d351caa172d7f22da437c29aa10b925a43da252c091a9782e3f19e242

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: 6e8c93fd9d488fe3cc6ebf8de47473f41c7496b3781c6af1d2d9235dd4480f5f
    • Transparency log index: 145063364
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 edf732a4bec34ead58e93f94c9fc8af6d14c709920825ca4533f25dbf9537906
MD5 d30c301a9cc7cfb6f33fe9cfb96e14b0
BLAKE2b-256 52b632e7ecd6e8b8054cbd681805bb4e42b40b1e84d07e96670fbaa8de112c17

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: edf732a4bec34ead58e93f94c9fc8af6d14c709920825ca4533f25dbf9537906
    • Transparency log index: 145063492
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 06244ea5ca32758de43680c1df1dac3e17e2d1164e572545769913318685a409
MD5 f26e9cf2cbac0019b4c3f36a3260940c
BLAKE2b-256 b08fffc84825bcb9e56743ebce46a83b14f2a5cf039ec101fa1dcd155ff2bac3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 06244ea5ca32758de43680c1df1dac3e17e2d1164e572545769913318685a409
    • Transparency log index: 145063476
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4bf35cfb12d43f8901b66a7d1f055531426d27b47b31831873801d039b5d69c1
MD5 964640ccadd66c380d30af93bb9995a7
BLAKE2b-256 00b9e9a3cc7f41480633710e9e65e6732d05152587bac2eff46f96651868e168

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 4bf35cfb12d43f8901b66a7d1f055531426d27b47b31831873801d039b5d69c1
    • Transparency log index: 145063528
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb8d590664865cb607c9c540a5a09d77a109c4ef18bd68053fbe7b889721a4db
MD5 b13a738304f5dbbbb919f3b483e99f0b
BLAKE2b-256 972d786f7fb9c61868a3f83c753054fcf5ba37f7e00ec44fcc9b7ed0fb3d9212

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: fb8d590664865cb607c9c540a5a09d77a109c4ef18bd68053fbe7b889721a4db
    • Transparency log index: 145063457
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c358756518243835a329da4eb3e454226562d8cc7a4b10eef8338753e41e9aa7
MD5 1a098668fa561958034521c5150a376a
BLAKE2b-256 d11a3bd16798bce559e43714b019cd10b8317553643a16d20d5baaec62f32355

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: c358756518243835a329da4eb3e454226562d8cc7a4b10eef8338753e41e9aa7
    • Transparency log index: 145063478
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dc83551684cd547ca6aab662eda4b2e48aa7460dd8eb103fb6e9a453320971d
MD5 fed3efa1b6600c99da4b3dc90ec08dce
BLAKE2b-256 6f9ab10885e79b84575b211a646f24116e94591e05221627c883a363321e5209

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: 8dc83551684cd547ca6aab662eda4b2e48aa7460dd8eb103fb6e9a453320971d
    • Transparency log index: 145063384
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fff0935f5dcc84669a4091b36bf476d4bd30adef76fafe77814299fabbff2ab4
MD5 53a94f0fb5e7bd6c74d0bfbf0845defc
BLAKE2b-256 8f4da1b93c6aa715ef7317b1e1cb4b481d9d9d49629222488592b7a7c97854c6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: fff0935f5dcc84669a4091b36bf476d4bd30adef76fafe77814299fabbff2ab4
    • Transparency log index: 145063370
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 77.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 be3c6726a3e0cf90301a1172dbdbc8fa5f6e886b93bbc4d8aad2984081c87dfc
MD5 54ed5f3d7a86ffab128a41f685213978
BLAKE2b-256 bf7a3787fb90375bbf95a71f07f34c7748a1e99ba5257bba231e344616e6173e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-win_amd64.whl
    • Subject digest: be3c6726a3e0cf90301a1172dbdbc8fa5f6e886b93bbc4d8aad2984081c87dfc
    • Transparency log index: 145063407
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-5.9.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a4f78746f2e5f892e523fd22d84c93036f227a876a2ee5d8b8a53698d241ecf1
MD5 085a0eadfd453d95fb22e5a96ad5aada
BLAKE2b-256 eb37d52613dac5c8b89e2970ce44f1ae47cd9775c06277726b443a8749f8c068

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-win32.whl
    • Subject digest: a4f78746f2e5f892e523fd22d84c93036f227a876a2ee5d8b8a53698d241ecf1
    • Transparency log index: 145063530
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5a921b35ef507dccd86c41afb236d7c353a129f498559bb994893ff5a3850baa
MD5 c648ba591aa6bdc5d344dcb55af0648d
BLAKE2b-256 aed7075dcbc685806b75b5d1639061603cb3e8046e4a40622bc3aed716dabea5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: 5a921b35ef507dccd86c41afb236d7c353a129f498559bb994893ff5a3850baa
    • Transparency log index: 145063472
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 2bef6b9bc9ce1e548b48c0f8ac59552d0fa53be4d3d424927db7e5e4f5941318
MD5 ec5164a3895a1c69fb74988984b51a1e
BLAKE2b-256 e035ae0925426f903b04cd4689f722f5359ba3658f95d6653a2d7102eb52ee84

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: 2bef6b9bc9ce1e548b48c0f8ac59552d0fa53be4d3d424927db7e5e4f5941318
    • Transparency log index: 145063423
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 d6e68b8ebf05a8ba317b6b976fc372645994bf196ef2206b775d093fc89a6855
MD5 40aeadf255013693e91802c0b8109ac6
BLAKE2b-256 ca1b051f83c5241a8ed7d6420f63d2e8b63488c784988d7033d3becaf9b7aa7d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: d6e68b8ebf05a8ba317b6b976fc372645994bf196ef2206b775d093fc89a6855
    • Transparency log index: 145063506
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 12d105e88a2bdb5b6a8546c2d1f3e11a1f476928d1f9876c0ce9d41e1e64b4c1
MD5 fba93cc8bd67c0ac81fbc0aacee3fef5
BLAKE2b-256 2d78c16e89e6eb32bea4df57ad859b854ddd76c237327967210a79fe55271c7c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: 12d105e88a2bdb5b6a8546c2d1f3e11a1f476928d1f9876c0ce9d41e1e64b4c1
    • Transparency log index: 145063522
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 58b4f355d7a1ce57e07892091f4d8fc9a80895ee2bcca5245537e0623e5ac693
MD5 1d1cc166335d216df5421203f5e6a7de
BLAKE2b-256 d349ba8f212c3a4c8e62ba65e63b0bc82f1f1b5b7684b29c7c9cd6ae4950188b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: 58b4f355d7a1ce57e07892091f4d8fc9a80895ee2bcca5245537e0623e5ac693
    • Transparency log index: 145063382
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edd26bc50214671df12bb4a4afc12006fef182ae6cbfab2b4041ff5e1b5dde04
MD5 08c04906de164b2e39cd2fe717c00dce
BLAKE2b-256 e13ec24d595ffad9970fbf69ae98fa0daea74db3409cc9707d68efe6e3eca318

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: edd26bc50214671df12bb4a4afc12006fef182ae6cbfab2b4041ff5e1b5dde04
    • Transparency log index: 145063516
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cb2ffb7c026038d069a61249d609e5820ac71a1690de2ca6b5530394c2f1f5bd
MD5 07a633f64baeb63b0b1af2bc5f9bf091
BLAKE2b-256 bec467d2844a3b167f02109e49eeae062e57eea7a86533e922422b41be80d5f3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: cb2ffb7c026038d069a61249d609e5820ac71a1690de2ca6b5530394c2f1f5bd
    • Transparency log index: 145063544
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8b42da72779f1496b8a9dd63e101119bde32605535469783e3b78b1fa5443eea
MD5 54b4a9e20eb5d01c07cccfa474fab5e6
BLAKE2b-256 36baadf09336ad6ee527515590ff0e13fa55fe9cf07f960a40b7ccb6c401cf13

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 8b42da72779f1496b8a9dd63e101119bde32605535469783e3b78b1fa5443eea
    • Transparency log index: 145063388
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6cebe128e191a437fd7be2087442e6520a7f6acc15eb652b86cf533367c613c3
MD5 e487d9d12a8a0bf7985dbed2fa2d7bf9
BLAKE2b-256 b7e62e203c4ce10d44f5242380b7aea970f482cbc5ab15e589bebc756b0dc38e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 6cebe128e191a437fd7be2087442e6520a7f6acc15eb652b86cf533367c613c3
    • Transparency log index: 145063501
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a7f14384d6d423f95bd31bccf2369f52769ae046e0417721a48f517a11757cae
MD5 bcaf9ddb7337fd3a37999cc01d7bff70
BLAKE2b-256 a65b3432e819b6e4356dc0ceb88ffc700193e27dfbd6e06538038b28d2e3fb71

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: a7f14384d6d423f95bd31bccf2369f52769ae046e0417721a48f517a11757cae
    • Transparency log index: 145063461
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dddfbfff7bf7b298f085722ca882c19df1dd1e5fec3385e80efd236185c8f984
MD5 e4eecb898722edbf18d8b939d91eac9e
BLAKE2b-256 1ad727183b4b5ce92c024e0b2801c917f4006ee05f59c6e8b0376f80789fb6e9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: dddfbfff7bf7b298f085722ca882c19df1dd1e5fec3385e80efd236185c8f984
    • Transparency log index: 145063538
    • Transparency log integration time:

File details

Details for the file simsimd-5.9.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-5.9.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e1f90ca2dd3efc7de3fe317dad36c67bc0b4ae67937d98962c87856271077ce
MD5 1bf4743c673d43e716295a6bb62fef04
BLAKE2b-256 c39bade7f35432db9c8066f2ee432d40da56dc5100ad3840ec10a7a357dd9550

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-5.9.7-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-5.9.7-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: 7e1f90ca2dd3efc7de3fe317dad36c67bc0b4ae67937d98962c87856271077ce
    • Transparency log index: 145063473
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page