Skip to main content

Framework for optimizing stellarators

Project description

simsopt

GitHub codecov DOI

SIMSOPT SIMSOPT

simsopt is a framework for optimizing stellarators. The high-level routines of simsopt are in python, with calls to C++ or fortran where needed for performance. Several types of components are included:

  • Interfaces to physics codes, e.g. for MHD equilibrium.
  • Tools for defining objective functions and parameter spaces for optimization.
  • Geometric objects that are important for stellarators - surfaces and curves - with several available parameterizations.
  • Efficient implementations of the Biot-Savart law and other magnetic field representations, including derivatives.
  • Tools for parallelized finite-difference gradient calculations.

The design of simsopt is guided by several principles:

  • Thorough unit testing, regression testing, and continuous integration.
  • Extensibility: It should be possible to add new codes and terms to the objective function without editing modules that already work, i.e. the open-closed principle. This is because any edits to working code can potentially introduce bugs.
  • Modularity: Physics modules that are not needed for your optimization problem do not need to be installed. For instance, to optimize SPEC equilibria, the VMEC module need not be installed.
  • Flexibility: The components used to define an objective function can be re-used for applications other than standard optimization. For instance, a simsopt objective function is a standard python function that can be plotted, passed to optimization packages outside of simsopt, etc.

simsopt is fully open-source, and anyone is welcome to use it, make suggestions, and contribute.

Several methods are available for installing simsopt. One recommended approach is to use pip:

pip install simsopt

For detailed installation instructions on some specific systems, see the wiki. Also, a Docker container is available with simsopt and its components pre-installed, which can be started using

docker run -it --rm hiddensymmetries/simsopt

More installation options, instructions for the Docker container, and other information can be found in the main simsopt documentation here.

Some of the physics modules with compiled code reside in separate repositories. These separate modules include

  • VMEC, for MHD equilibrium.
  • SPEC, for MHD equilibrium.
  • booz_xform, for Boozer coordinates.

If you use simsopt in your research, kindly cite the code using this reference:

[1] M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu, "SIMSOPT: A flexible framework for stellarator optimization", J. Open Source Software 6, 3525 (2021).

See also the simsopt publications page.

We gratefully acknowledge funding from the Simons Foundation's Hidden symmetries and fusion energy project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsopt-1.8.3.tar.gz (20.6 MB view details)

Uploaded Source

Built Distributions

simsopt-1.8.3-cp313-cp313-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

simsopt-1.8.3-cp313-cp313-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

simsopt-1.8.3-cp313-cp313-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

simsopt-1.8.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

simsopt-1.8.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

simsopt-1.8.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

simsopt-1.8.3-cp313-cp313-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

simsopt-1.8.3-cp313-cp313-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

simsopt-1.8.3-cp312-cp312-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsopt-1.8.3-cp312-cp312-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsopt-1.8.3-cp312-cp312-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsopt-1.8.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

simsopt-1.8.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsopt-1.8.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

simsopt-1.8.3-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsopt-1.8.3-cp312-cp312-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsopt-1.8.3-cp311-cp311-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsopt-1.8.3-cp311-cp311-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsopt-1.8.3-cp311-cp311-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsopt-1.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

simsopt-1.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsopt-1.8.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

simsopt-1.8.3-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsopt-1.8.3-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsopt-1.8.3-cp310-cp310-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsopt-1.8.3-cp310-cp310-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsopt-1.8.3-cp310-cp310-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsopt-1.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

simsopt-1.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsopt-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

simsopt-1.8.3-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsopt-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsopt-1.8.3-cp39-cp39-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsopt-1.8.3-cp39-cp39-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsopt-1.8.3-cp39-cp39-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsopt-1.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

simsopt-1.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsopt-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

simsopt-1.8.3-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsopt-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file simsopt-1.8.3.tar.gz.

File metadata

  • Download URL: simsopt-1.8.3.tar.gz
  • Upload date:
  • Size: 20.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for simsopt-1.8.3.tar.gz
Algorithm Hash digest
SHA256 ea208d74ea7a04f734f74f8464b98c8faa79454bc9be22dcf618897e4fc5b22f
MD5 fbc6032e2b66ab8d23c50b85a2a0ddff
BLAKE2b-256 950f46bf01fb228c8409c24068302b577ba72b12b1e10ad192ba462e5a9ca51b

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7f91862952e39cb22cb8d25356ea315cbd55fc314cea18c066bd8f9a1e08ea93
MD5 99c7766cf53ae84f59196e025a422bd6
BLAKE2b-256 48d31d25d3b6142652e3b8940aa02d09e6bb51c884cdc83a714e53dbbb7d14f6

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0da5b0ec780480e23ee0890945e171b379098c80afb69d476d0de5726d5e89bd
MD5 cbcc9349ea2b5036e352108d748dd3ab
BLAKE2b-256 cb234e1e5f966027a027dab2d0c13f3b750d63566cd94b13e696761faeb8ef86

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5c312d97896caccdc5a8fe05d95c19ffa1f590a73aa99767e39d8d98c2d56eeb
MD5 5b87eccef9346343e7d25b78626d4e60
BLAKE2b-256 cccde449707973806982ea42cd0d4d75aaec899255bfddea6c3b39922e8d6e09

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a18735da9a92e55e5ddb4705e79ba502588e37a1a2c0d470336e072e492ca7ed
MD5 f9c70beb9373dbad4b46ed3fe93984db
BLAKE2b-256 38a718eb54655411c3ca71528817f2d5ed3ef1d440c43e84ed5d784d383cbada

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcd34e041ab85ba415c4c01262396cd12ea1381748c4322f94642436597d6f7d
MD5 a939113946711e52fc649e1317eb4c8b
BLAKE2b-256 ca0148f3be0921adf3316eb3495b4f22a65573188f55364617fd6d06d78ff74b

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cdccf40017113e7b604062c1c46c090d342d92bea6b2eac98a007947a93903c
MD5 8d2e616de59baac9a965927f3756b621
BLAKE2b-256 17bbd3c33f18d751dce30158653cb44fa1aea2c4f5ecb5f21336c3a83294add6

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3feb07ff5747caf2b1e297222093b66de5c71eaaecdd52bb277a0d8b69486a4
MD5 dd215f1b7214e7f0331e5a8ea1119fa1
BLAKE2b-256 db8e634ffff8507a9bad177fc0a3adb315ea20433e45dff0a2a427cd09580ba9

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a5f64624bc4c2d0bac59986b9a7c0137bf54a1f255287a48c5cf1effae6ace71
MD5 ab3458d0853f9226d1b889acd51353f9
BLAKE2b-256 2766dd1744069876dd9735f80b232f712132699068e1647110f25c0c5920a2eb

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aedad6fbfaef8642a6b81b50370a18f1086126573d30c1fe9af35aed50476c1b
MD5 f665f4b91da12b87f09dec51e5491bd0
BLAKE2b-256 5d31f6326c3eb03e804148ad2bb4c12de1e3740582e3231406911cb35ff5ac3a

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6206d73d8cddcfc0791af3d1d6b8aea555b3ab67861b61eaadd2a4613e4043c6
MD5 538ae2c21e7e3649e34f73a6945b7866
BLAKE2b-256 2f30898f13b2cf6db79d25dda5bf646c0d6e641b1b98087e5f89c15f45013d23

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 748440d95a14dd1de6cf891bf5d3feb9a359311868f3190248600de473e57ec3
MD5 222e8b968a6421677cb0202ef4e698ef
BLAKE2b-256 cf4389854b9d90332d3ced3bef5c02052dd58c1b60ec799779111cb2592c36a4

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d85bde5378ba4425b957609f94eb45bb155d09c91244c276bff809c6fe916dd8
MD5 389017cb64e6719caab767afb5343a5c
BLAKE2b-256 a79a0376998a81e36dbe67f03e03244e20fd84b9731b7ff0dc333522f6d3368a

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3363a4769d20b077e6b4dce47c79fafea5337f31a5d78d86ebdb925f2e3bd747
MD5 50a3c7fffa11d2880bd25662e05ca5b3
BLAKE2b-256 60b7b4500a11c6b4d3bc3eedd71b3990d3a86ce0a5466b00207d4f6d0641bd9d

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c9fc44d08d566317b759ebe7f685031ae6d4195b075a1693962b1d3a95057a1
MD5 6ade4d897a9e09fff4aedea007000cb6
BLAKE2b-256 dcc1d9499940c205b63e3fa1f0c82c024ce7ee041eaa56e62e43337bf2dd27c7

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82daa763210dc92aced45a747134e9b60cc75e4b9a8699aec0f8ab798040ca41
MD5 0ddd1ff7d05a57127a36dcad8b618a15
BLAKE2b-256 399f3a199da696efb6b89f9e9b9adb8ce8ea1f12a17ddbfd1ad7e19270b3052f

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 19fee9f60284bcd6dbee7a977703048e35ccec58e1bddbc0611f8d2b1db12dbd
MD5 4d01c7fc6233ac48ce867dfb20617da6
BLAKE2b-256 e5f69907bb3d90e094c4d6d6e47cb9ff6684ecdb23ec71f873ffd86d7e4e4fcc

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d8e8c3f04cf6411a64f487e325225bf1ce3087d847a8f24ecddad5e57ca43b45
MD5 c00e11a62d7269a949179568f4b39f2e
BLAKE2b-256 7632fac8d285c955925044370577cd6e4fbe98a3268e4158a06d54ded087cc15

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 707cdbb1a38316949101cea54ce9a1f84dd1987659755c45378bc57848f6adef
MD5 e2727496322a1dc1f5bf1f16383fe5b6
BLAKE2b-256 2160d2d8f91bbb83cecae7815cfb2a08f4e67d3e5ac1a2c7b185b1d931acb3d6

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 3c91f0499bb859459fda9b0eb362672572b07a3181d48c44189c6a46d0b63d2e
MD5 d04326b09982f1891257680d8e43cc07
BLAKE2b-256 eb65d94b5cfbf7f92ad4586bf8fac6cff7b24d3dc0eaa84eb97c6ef88933a2e5

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a05cd55d9ef8132e15f79c570076d4c1ea9dde38b31836895bd3c4c190fc7d14
MD5 f94cdbdb509a2e1d3c5eb5940b992d80
BLAKE2b-256 5723a054bdd52bf2bfb6669dd38bddc7300cd09853e89a07748a89e2fc2f05b0

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe7df03fda9cce6b629c719a49fc777aa0495fe651a4bc988be68ed07fde9366
MD5 969b4ba317383c876384cb9b8b7e161c
BLAKE2b-256 4bf7d971f82c90582ff1a8cd58a0549d05f29e566a5def77c7835e584ee4e1b6

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f04bb9d38017222cebe9b844191dd6682b3c81ac853171fc4eb441057b9bbf46
MD5 542ed800cdb3e16a79674dd5c06a7aaf
BLAKE2b-256 68766cc902996aee1494f58b9efe98eb81f79dcf303684cc7378f11bd26b6cca

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c065a1db97fdc6b3f046a2731296c446a3090533b7f849ea78e6366ec8a97c62
MD5 ef283ddc2c68fa49f74b37d48417949b
BLAKE2b-256 d2170a894f2bb469fcac783683e7a009496c530445ec1e62cbbfbe2b736d09d7

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3fc401cb87f01d024db49dcde816d0645229fb54705f696f4278b56c449886c2
MD5 42116a833c6a413fcb57022ae3280262
BLAKE2b-256 f55397c70a7848d68372102fb70569cad98438f52d894273d2b7dfea08c5f604

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e4e5bddcfcd76d9c6ee7f7b465d3973fe6bb6a3d04c1be94cd9a529266560d52
MD5 346c665ef8d1b2f443e4d8a081685d0d
BLAKE2b-256 30a8e715a4441d7fe6e151eec4d3d3814d832677a1006bec8e75cca6c688fed0

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1d38545070ec4c7dc9f50fcddd174cf9c64af707fdf2f97735faf3fcc653345a
MD5 e496f0f0e0fd72c991f2e62200e3fa26
BLAKE2b-256 b0a61a20c65fc8402dd94e29ef5bcdf6d9b0cc5a68019fcf26a1bef1a20260ea

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 688e8105e7d1711b9783faacb008536703a5aae88adc634bbd5e336a8bc216a2
MD5 52270fcc60efdca8afa967cfb360d434
BLAKE2b-256 d20aaecc87a27adbac2118de09dbc70460d5e9bf83677ad8829a8fd5c1bdf1a4

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 765593b79e20c3c89d0af12d7ce4ee9bb9834a3459897a74ce8c2fc4fc2b8517
MD5 93de71edeeb9b25e28d83892d130c13b
BLAKE2b-256 7d28d2a8c7c1f8794db1dce5787cce018639f6b8d306cc98ab3059e4cabad0f7

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 307db8a137fb91b474d061f4a73deda50ae809bc5fed7628d5fe3890ce283eb9
MD5 fd151fb74a6ad511195024804e81adc7
BLAKE2b-256 0e52d3c04c1751dd8d916f8848c50963b0d5a4e3967a99702d7411ccbe053b2b

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7f35f429a3f23ed690cc016cf5c56859204ceb06a0ed046c6fa947fb471b2ac
MD5 ef5a9d2d58514131b6a5bd35bb66c09b
BLAKE2b-256 2be0ae58f70037f5cfb878df49cd3dd09f499049664669efc29d74bde65bbc85

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14a599be5348195c76592a693e590c0177dd3a8066e5d32ca14cf6f59d8fcaf3
MD5 505dc93c888772dc61a4d3decd0c6043
BLAKE2b-256 3719f7b09ea3e50b814d1ed3631361e20c26b8aa349c756c1ee7810131e836db

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7039a7cb87200effff2c1a53750121d4b9a3a79ccb9a59082834bd9271bf8339
MD5 530a4d68a61f95c8af0c20560e33e6bf
BLAKE2b-256 3f6572ba1a7c5653ae2c2dfe5398c552f281aefc380ac9cf7ab95a08e23ce24e

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f3916b2681c69b2c74285fa291fca0a79b61855312fcba6e5931ff1498b79e17
MD5 78a256f29087372b21f610f32cb1d9f7
BLAKE2b-256 4143d8c74caaac3ce1c169e0564fddfb8785126788b94b39710cfe7df061153b

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f7025fbeddb8a57d774558c090971714abdd9191f8a51a59767f20a12e93d958
MD5 aa1c5f0ae6fba884ed944ed1e8d82a10
BLAKE2b-256 34342440112e428d848bcfaec372d8138d6ce82d2e5f95bb4c5554f8e70e2f74

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9b72846bea8b71bb9b28e26ac1c8319a975bf4ff2eaa7928ef1584557bc1cb45
MD5 7bd97615664a54152a448d48d4141632
BLAKE2b-256 c86d21013b0e645e4f242d8588acf676d99117d4bb7aba048a3aa4800961e949

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f4f0f9b421e993e34ca9baf830157d80791e4833bcdef7fb083d1181142532a
MD5 580490289e1ae8fee3c6df90821f0c2f
BLAKE2b-256 337f18b2588bac1b4b5fa6261edc75bde1a5209edfc881a8a4ad69e741f80b8f

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 413267224009356a455a0120662eae315571a799e386114bdc1ef985247eab65
MD5 a7d21e64790f6270c4615fa17a6e54f5
BLAKE2b-256 4a61b718c80f99ac6d726b8d3c5e0b9b181ea1d7663f6780fdfce876bb943e94

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2f99282e7747bc9c42d86a4e2e72fb01dbf756aa65fc1e34d13061cfdfe836c3
MD5 c48146567f2dfa405c25b97f9f47888d
BLAKE2b-256 cbb3aff06637a09d2f9dd7106886e8601bd73143c77f6ab6042fee38ef3787cc

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3912231606f9fa89fce62c4f4b50abb7ce62532c3c0331c0a2e7a23a21dc1b7
MD5 c254b583c4a35ba9023ca9b2da89f5c4
BLAKE2b-256 29ee6ce6c08f245335869ad2f1a4a6931005fadefb788a5eb94527b27691035a

See more details on using hashes here.

File details

Details for the file simsopt-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsopt-1.8.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62d0cd8f7374d53a6c83f71adc2fe864e17270e4f7a9770e7bd6ec4945d08e5e
MD5 a5226a002837bfb7251ebb4cabde7a0d
BLAKE2b-256 2474fbbea2eec6b02caf364d91816ddfeb88a4bd0c6f2e40b937839ddd3466a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page