Skip to main content

factor model

Project description

This programme is built for back-testing factors.

Dependencies

  • python 3.5

  • pandas 0.23.0

  • numba 0.38.0

  • empyrical 0.5.0

  • data_box

  • pickle

  • multiprocessing

  • joblib

Logic

Basic definitions

  1. v_t,s_t,c_t: total value, stock value and cash value at time t after trading

  2. v^f_t,s^f_t,c^f_t: total value, stock value and cash value at time t before trading

  3. ss,sv: suspended stock value and valid stock value

  4. r_t: return at time t

  5. cost_t: cost to trade at time t

Note: s,ss,sv are all vectors while others are numbers

Equations

  1. v_t = |s_t| + c_t

  2. s^f_t = s_{t-1} * (1 + r_t) = ss^f_t + sv^f_t = ss_t + sv^f_t

  3. ss_t <- suspend, s^f_t

  4. c_{t-1} + |sv^f_t| = |sv_t| + c_t + cost_t ( where c_t, cost_t >= 0 )

  5. cost_t =|sv_t - sv^f_t| * costRate

  6. weight_t <- factor_{t-1},industry_t,suspend_t ( |weight_t| = 1 or 0 if there is no valid stocks or factors or industries)

  7. define cost^f_t = (2|sv^f_t| + c_{t-1}) * costRate s.t. cost^f_t >= cost_t, which is greater than the maximum cost we may have during the trade

  8. define available_value^f_t = c_{t-1} + |sv^f_t| - cost^f_t, which means the value ( = |sv_t| if weight_t != 0) we have in stocks after trading

  9. let sv_t = weight_t * available_value^f_t s.t. c_t = c_{t-1} + |sv^f_t| - |sv_t| - cost_t >=0

Example

Data Box: pre-process

from data_box import data_box
db=data_box()\
    .load_indestry(ind)\
    .load_indexWeight(ind_weight)\
    .calc_indweight()\
    .load_suspend(sus)\
    .load_adjPrice(price)\
    .add_factor('factor0',factor0)\
    .add_factor('factor1',factor1)\
    .set_lag(freq='d',day_lag=1)\
    .align_data()
# freq can be 'd' or 'm', for detail please refer to db.set_lag doc.

Where price,ind,ind_weight,sus,factor0,factor1 are all dataframes with index as date (yyyymmdd,int) and column as tickers. You can save and load this data box object by db.save('path') and db.load('path'). You can find more in data_box project.

Back Test

from single_factor_model import run_back_test

single process

Value,Turnover=run_back_test(data_box=db,back_end=None,n=5,weight_path=None,double_side_cost=0.003)

multi process

Value,Turnover=run_back_test(data_box=db,back_end='loky',n=5,weight_path=None,verbose=50)

or

with __name__=='__main__':
    Value,Turnover=run_back_test(data_box=db,back_end='multiprocessing',n=5,weight_path=None)

To check detailed position of each portfolio each day, just assign weight_path.

Summary and Plot

calculate return including long short portfolio(and reverse)

from single_factor_model import calc_return
Return = calc_return(Value,Turnover,long_short,double_side_cost=0.003)

summary

from single_factor_model import summary
S=summary(Return)

plot

run_plot(Return,show=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

single_factor_model-0.3.0a0.tar.gz (8.1 kB view details)

Uploaded Source

File details

Details for the file single_factor_model-0.3.0a0.tar.gz.

File metadata

  • Download URL: single_factor_model-0.3.0a0.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.14.2 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.5

File hashes

Hashes for single_factor_model-0.3.0a0.tar.gz
Algorithm Hash digest
SHA256 ec0aa190ead20c26b9c5482fd6009f45b40eb2dadecc57996bf645f0b7181be5
MD5 a8f800165edace28e8ed5ce447ba7ea7
BLAKE2b-256 ca00cc9d89157d01401b07493675cd8da13d4e97a5fa4cabdf255e5d8a5d4f00

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page