Skip to main content

Forecasting time series with scikitlearn regressors

Project description

Maintenance Python Licence Downloads

skforecast

logo-skforecast

Time series forecasting with scikit-learn regressors.

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (XGBoost, LightGBM, Ranger...).

Documentation: https://joaquinamatrodrigo.github.io/skforecast/

Table of contents

Installation

$ pip install skforecast

Specific version:

$ pip install git+https://github.com/JoaquinAmatRodrigo/skforecast@v0.1.9

Latest (unstable):

$ pip install git+https://github.com/JoaquinAmatRodrigo/skforecast#master

The most common error when importing the library is:

'cannot import name 'mean_absolute_percentage_error' from 'sklearn.metrics'.

This is because the scikit-learn installation is lower than 0.24. Try to upgrade scikit-learn with

pip install scikit-learn==0.24

Dependencies

  • python>=3.7.1
  • numpy>=1.20.1
  • pandas>=1.2.2
  • tqdm>=4.57.0
  • scikit-learn>=0.24

Features

  • Create recursive autoregressive forecasters from any scikit-learn regressor
  • Create multi-output autoregressive forecasters from any scikit-learn regressor
  • Grid search to find optimal hyperparameters
  • Grid search to find optimal lags (predictors)
  • Include exogenous variables as predictors
  • Include custom predictors (rolling mean, rolling variance ...)
  • Backtesting
  • Prediction interval estimated by bootstrapping
  • Get predictor importance

TODO

  • Pandas dataframe as input of multiple exogenous variables
  • Parallel grid search
  • Speed lag creation with numba
  • Increase unit test coverage

Introduction

A time series is a sequence of data arranged chronologically, in principle, equally spaced in time. Time series forecasting is the use of a model to predict future values based on previously observed values, with the option of also including other external variables.

When working with time series, it is seldom needed to predict only the next element in the series (t+1). Instead, the most common goal is to predict a whole future interval (t+1, ..., t+n) or a far point in time (t+n). There are several strategies that allow generating this type of multiple predictions.

Recursive multi-step forecasting

Since the value of t(n) is required to predict the point t(n-1), and t(n-1) is unknown, it is necessary to make recursive predictions in which, each new prediction, is based on the previous one. This process is known as recursive forecasting or recursive multi-step forecasting.

forecasting-python


The main challenge when using scikit-learn models for recursive multi-step forecasting is transforming the time series in an matrix where, each value of the series, is related to the time window (lags) that precedes it. This forecasting strategy can be easily generated with the classes ForecasterAutoreg and ForecasterAutoregCustom.

forecasting-python

Time series transformation into a matrix of 5 lags and a vector with the value of the series that follows each row of the matrix.

forecasting-python

Time series transformation including an exogenous variable.



Direct multi-step forecasting

This strategy consists of training a different model for each step. For example, to predict the next 5 values of a time series, 5 different models are trainded, one for each step. As a result, the predictions are independent of each other. This forecasting strategy can be easily generated with the ForecasterAutoregMultiOutput class (changed in version 0.1.9).

forecasting-python

Time series transformation into the matrices needed to train a direct multi-step forecaster.



Examples

Autoregressive forecaster

# Libraries
# ==============================================================================
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from skforecast.ForecasterAutoreg import ForecasterAutoreg
from skforecast.ForecasterAutoregCustom import ForecasterAutoregCustom
from skforecast.model_selection import grid_search_forecaster
from skforecast.model_selection import time_series_spliter
from skforecast.model_selection import cv_forecaster
from skforecast.model_selection import backtesting_forecaster
from skforecast.model_selection import backtesting_forecaster_intervals

from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
datos = pd.read_csv(url, sep=',')

# Data preprocessing
# ==============================================================================
datos['fecha'] = pd.to_datetime(datos['fecha'], format='%Y/%m/%d')
datos = datos.set_index('fecha')
datos = datos.rename(columns={'x': 'y'})
datos = datos.asfreq('MS')
datos = datos['y']
datos = datos.sort_index()

# Split train-test
# ==============================================================================
steps = 36
datos_train = datos[:-steps]
datos_test  = datos[-steps:]

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos.plot(ax=ax, label='y')
ax.legend();

# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                    regressor = LinearRegression(),
                    lags      = 15
                )

forecaster.fit(y=datos_train)
forecaster
=======================ForecasterAutoreg=======================
Regressor: LinearRegression()
Lags: [ 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15]
Exogenous variable: False
Parameters: {'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'normalize': False, 'positive': False}
# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps)
# Add datetime index to predictions
predictions = pd.Series(data=predictions, index=datos_test.index)

# Prediction error
# ==============================================================================
error_mse = mean_squared_error(
                y_true = datos_test,
                y_pred = predictions
            )
print(f"Test error (mse): {error_mse}")

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos_train.plot(ax=ax, label='train')
datos_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
Test error (mse): 0.011051937043503587

# Grid search hiperparameters and lags
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor = RandomForestRegressor(random_state=123),
                lags      = 12
             )

# Regressor hiperparameters
param_grid = {'n_estimators': [50, 100],
              'max_depth': [5, 10]}

# Lags used as predictors
lags_grid = [3, 10, [1,2,3,20]]

results_grid = grid_search_forecaster(
                        forecaster  = forecaster,
                        y           = datos_train,
                        param_grid  = param_grid,
                        lags_grid   = lags_grid,
                        steps       = 10,
                        method      = 'cv',
                        metric      = 'mean_squared_error',
                        initial_train_size    = int(len(datos_train)*0.5),
                        allow_incomplete_fold = False,
                        return_best = True,
                        verbose     = False
                    )

results_grid
loop lags_grid:   0%|          | 0/3 [00:00<?, ?it/s]
loop param_grid:   0%|          | 0/4 [00:00<?, ?it/s]
loop param_grid:  25%|██▌       | 1/4 [00:00<00:02,  1.40it/s]
loop param_grid:  50%|█████     | 2/4 [00:02<00:02,  1.11s/it]
loop param_grid:  75%|███████▌  | 3/4 [00:02<00:00,  1.06it/s]
loop param_grid: 100%|██████████| 4/4 [00:04<00:00,  1.13s/it]
loop lags_grid:  33%|███▎      | 1/3 [00:04<00:08,  4.28s/it] 
loop param_grid:   0%|          | 0/4 [00:00<?, ?it/s]
loop param_grid:  25%|██▌       | 1/4 [00:00<00:02,  1.29it/s]
loop param_grid:  50%|█████     | 2/4 [00:02<00:02,  1.20s/it]
loop param_grid:  75%|███████▌  | 3/4 [00:03<00:01,  1.03s/it]
loop param_grid: 100%|██████████| 4/4 [00:04<00:00,  1.25s/it]
loop lags_grid:  67%|██████▋   | 2/3 [00:08<00:04,  4.52s/it] 
loop param_grid:   0%|          | 0/4 [00:00<?, ?it/s]
loop param_grid:  25%|██▌       | 1/4 [00:00<00:02,  1.38it/s]
loop param_grid:  50%|█████     | 2/4 [00:02<00:02,  1.12s/it]
loop param_grid:  75%|███████▌  | 3/4 [00:02<00:00,  1.06it/s]
loop param_grid: 100%|██████████| 4/4 [00:04<00:00,  1.14s/it]
loop lags_grid: 100%|██████████| 3/3 [00:13<00:00,  4.42s/it] 
2021-02-25 09:51:43,075 root       INFO  Refitting `forecaster` using the best found parameters: 
lags: [ 1  2  3  4  5  6  7  8  9 10] 
params: {'max_depth': 10, 'n_estimators': 50}
      lags	params	metric
6	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	{'max_depth': 10, 'n_estimators': 50}	0.023449
4	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	{'max_depth': 5, 'n_estimators': 50}	0.025417
7	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	{'max_depth': 10, 'n_estimators': 100}	0.025954
5	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]	{'max_depth': 5, 'n_estimators': 100}	0.026003
1	[1, 2, 3]	{'max_depth': 5, 'n_estimators': 100}	0.028223
0	[1, 2, 3]	{'max_depth': 5, 'n_estimators': 50}	0.030685
3	[1, 2, 3]	{'max_depth': 10, 'n_estimators': 100}	0.031385
2	[1, 2, 3]	{'max_depth': 10, 'n_estimators': 50}	0.038591
8	[1, 2, 3, 20]	{'max_depth': 5, 'n_estimators': 50}	0.048428
9	[1, 2, 3, 20]	{'max_depth': 5, 'n_estimators': 100}	0.049842
10	[1, 2, 3, 20]	{'max_depth': 10, 'n_estimators': 50}	0.051059
11	[1, 2, 3, 20]	{'max_depth': 10, 'n_estimators': 100}	0.052205
# Predictors importance
# ==============================================================================
forecaster.get_feature_importances()
[0.58116139 0.12777451 0.04191822 0.03095527 0.02517231 0.02482571
 0.04065757 0.01652861 0.02619182 0.08481458]
# Prediction intervals
# ==============================================================================
predictions = forecaster.predict_interval(
                    steps    = steps,
                    interval = [5, 95],
                    n_boot   = 1000
              )

# Add datetime index to predictions
predictions = pd.DataFrame(data=predictions, index=datos_test.index)
fig, ax=plt.subplots(figsize=(9, 4))
#datos_train.plot(ax=ax, label='train')
datos_test.plot(ax=ax, label='test')
predictions.iloc[:, 0].plot(ax=ax, label='predictions')
ax.fill_between(predictions.index,
                predictions.iloc[:, 1],
                predictions.iloc[:, 2],
                alpha=0.5)
ax.legend();

# Backtesting
# ==============================================================================
n_test = 36*3 + 1
datos_train = datos[:-n_test]
datos_test  = datos[-n_test:]

steps = 36
regressor = LinearRegression()
forecaster = ForecasterAutoreg(regressor=regressor, lags=15)

metric, predictions_backtest = backtesting_forecaster(
    forecaster = forecaster,
    y          = datos,
    initial_train_size = len(datos_train),
    steps      = steps,
    metric     = 'mean_squared_error',
    verbose    = True
)
print(metric)

# Add datetime index to predictions
predictions_backtest = pd.Series(data=predictions_backtest, index=datos_test.index)
fig, ax = plt.subplots(figsize=(9, 4))
#datos_train.plot(ax=ax, label='train')
datos_test.plot(ax=ax, label='test')
predictions_backtest.plot(ax=ax, label='predictions')
ax.legend();
Number of observations used for training: 95
Number of folds: 4
Last fold only includes 1 observations.
[0.02150972]

Autoregressive forecaster with 1 exogenous predictor

# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
datos = pd.read_csv(url, sep=',')

# Data preprocessing
# ==============================================================================
datos['fecha'] = pd.to_datetime(datos['fecha'], format='%Y/%m/%d')
datos = datos.set_index('fecha')
datos = datos.rename(columns={'x': 'y'})
datos = datos.asfreq('MS')
datos = datos['y']
datos = datos.sort_index()

# Exogenous variable
# ==============================================================================
datos_exog = datos.rolling(window=10, closed='right').mean() + 0.5
datos_exog = datos_exog[10:]
datos = datos[10:]

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos.plot(ax=ax, label='y')
datos_exog.plot(ax=ax, label='exogenous variable')
ax.legend();

# Split train-test
# ==============================================================================
steps = 36
datos_train = datos[:-steps]
datos_test  = datos[-steps:]

datos_exog_train = datos_exog[:-steps]
datos_exog_test  = datos_exog[-steps:]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                    regressor = LinearRegression(),
                    lags      = 8
             )

forecaster.fit(y=datos_train, exog=datos_exog_train)

# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps, exog=datos_exog_test)
# Add datetime index to predictions
predictions = pd.Series(data=predictions, index=datos_test.index)

# Error prediction
# ==============================================================================
error_mse = mean_squared_error(
                y_true = datos_test,
                y_pred = predictions
            )
print(f"Test error (mse): {error_mse}")

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos_train.plot(ax=ax, label='train')
datos_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
Test error (mse): 0.020306077140235308

# Grid search hiperparameters and lags
# ==============================================================================
forecaster = ForecasterAutoreg(
                regressor=RandomForestRegressor(random_state=123),
                lags=12
             )

# Regressor hiperparameters
param_grid = {'n_estimators': [50, 100],
              'max_depth': [5, 10]}

# Lags used as predictors
lags_grid = [3, 10, [1,2,3,20]]

results_grid = grid_search_forecaster(
                        forecaster  = forecaster,
                        y           = datos_train,
                        exog        = datos_exog_train,
                        param_grid  = param_grid,
                        lags_grid   = lags_grid,
                        steps       = 10,
                        method      = 'cv',
                        metric      = 'mean_squared_error',
                        initial_train_size    = int(len(datos_train)*0.5),
                        allow_incomplete_fold = False,
                        return_best = True,
                        verbose     = False
                )

# Results grid Search
# ==============================================================================
results_grid

Autoregressive forecaster with n exogenous predictors


# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
datos = pd.read_csv(url, sep=',')

# Data preprocessing
# ==============================================================================
datos['fecha'] = pd.to_datetime(datos['fecha'], format='%Y/%m/%d')
datos = datos.set_index('fecha')
datos = datos.rename(columns={'x': 'y'})
datos = datos.asfreq('MS')
datos = datos['y']
datos = datos.sort_index()

# Exogenous variables
# ==============================================================================
datos_exog_1 = datos.rolling(window=10, closed='right').mean() + 0.5
datos_exog_2 = datos.rolling(window=10, closed='right').mean() + 1
datos_exog_1 = datos_exog_1[10:]
datos_exog_2 = datos_exog_2[10:]
datos = datos[10:]

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos.plot(ax=ax, label='y')
datos_exog_1.plot(ax=ax, label='exogenous 1')
datos_exog_2.plot(ax=ax, label='exogenous 2')
ax.legend();

# Split train-test
# ==============================================================================
steps = 36
datos_train = datos[:-steps]
datos_test  = datos[-steps:]

datos_exog = np.column_stack((datos_exog_1.values, datos_exog_2.values))
datos_exog_train = datos_exog[:-steps,]
datos_exog_test  = datos_exog[-steps:,]
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoreg(
                    regressor = LinearRegression(),
                    lags      = 8
             )

forecaster.fit(y=datos_train, exog=datos_exog_train)

# Predict
# ==============================================================================
steps = 36
predictions = forecaster.predict(steps=steps, exog=datos_exog_test)
# Add datetime index
predictions = pd.Series(data=predictions, index=datos_test.index)

# Error
# ==============================================================================
error_mse = mean_squared_error(
                y_true = datos_test,
                y_pred = predictions
            )
print(f"Test error (mse): {error_mse}")

# Plot
# ==============================================================================
fig, ax=plt.subplots(figsize=(9, 4))
datos_train.plot(ax=ax, label='train')
datos_test.plot(ax=ax, label='test')
predictions.plot(ax=ax, label='predictions')
ax.legend();
Test error (mse): 0.020306077140235298

Autoregressive forecaster with custom predictors

# Download data
# ==============================================================================
url = ('https://raw.githubusercontent.com/JoaquinAmatRodrigo/skforecast/master/data/h2o.csv')
datos = pd.read_csv(url, sep=',')

# Data preprocessing
# ==============================================================================
datos['fecha'] = pd.to_datetime(datos['fecha'], format='%Y/%m/%d')
datos = datos.set_index('fecha')
datos = datos.rename(columns={'x': 'y'})
datos = datos.asfreq('MS')
datos = datos['y']
datos = datos.sort_index()

# Split train-test
# ==============================================================================
steps = 36
datos_train = datos[:-steps]
datos_test  = datos[-steps:]
# Custom function to create poredictors
# ==============================================================================
def create_predictors(y):
    '''
    Create first 10 lags of a time series.
    Calculate moving average with window 20.
    '''

    X_train = pd.DataFrame({'y':y.copy()})
    for i in range(0, 10):
        X_train[f'lag_{i+1}'] = X_train['y'].shift(i)

    X_train['moving_avg'] = X_train['y'].rolling(20).mean()

    X_train = X_train.drop(columns='y').tail(1).to_numpy()  

    return X_train  
# Create and fit forecaster
# ==============================================================================
forecaster = ForecasterAutoregCustom(
                    regressor      = RandomForestRegressor(random_state=123),
                    fun_predictors = create_predictors,
                    window_size    = 20
                )

forecaster.fit(y=datos_train)
# Grid search hiperparameters
# ==============================================================================
forecaster = ForecasterAutoregCustom(
                    regressor      = RandomForestRegressor(random_state=123),
                    fun_predictors = create_predictors,
                    window_size    = 20
                )

# Regressor hiperparameters
param_grid = {'n_estimators': [50, 100],
              'max_depth': [5, 10]}


results_grid = grid_search_forecaster(
                        forecaster  = forecaster,
                        y           = datos_train,
                        param_grid  = param_grid,
                        steps       = 36,
                        metric      = 'mean_squared_error',
                        method      = 'cv',
                        initial_train_size    = int(len(datos_train)*0.5),
                        allow_incomplete_fold = False,
                        return_best = True,
                        verbose     = False
                    )

Tutorials

(spanish)

References

  • Hyndman, R.J., & Athanasopoulos, G. (2018) Forecasting: principles and practice, 2nd edition, OTexts: Melbourne, Australia

  • Time Series Analysis and Forecasting with ADAM Ivan Svetunkov

  • Python for Finance: Mastering Data-Driven Finance

Licence

joaquinAmatRodrigo/skforecast is licensed under the MIT License, a short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skforecast-0.2.0.tar.gz (40.0 kB view details)

Uploaded Source

Built Distribution

skforecast-0.2.0-py2.py3-none-any.whl (51.7 kB view details)

Uploaded Python 2Python 3

File details

Details for the file skforecast-0.2.0.tar.gz.

File metadata

  • Download URL: skforecast-0.2.0.tar.gz
  • Upload date:
  • Size: 40.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.9

File hashes

Hashes for skforecast-0.2.0.tar.gz
Algorithm Hash digest
SHA256 944660c9d2cd6c82331420042811353b383f3f2edf271a7c030cacffd71fe935
MD5 7f43c612389b47462a29d604232be2ce
BLAKE2b-256 5e2b7f392dde3e549d5eca7cda5f62d6b9bb6227c215134ac40b1640d10456d1

See more details on using hashes here.

File details

Details for the file skforecast-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: skforecast-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 51.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.9

File hashes

Hashes for skforecast-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b723e53d28333e86b21eac9398a96e66f39d89c21b9096fba0db1c98d0ac6b41
MD5 e6eb6c1fca50b85fc0369d1618977f39
BLAKE2b-256 32b1bf33f013892ab37558af17d635eb4aa0adb1aa5bc7a22d35b716aeb571ab

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page