Skip to main content

Convert scikit-learn models to ONNX

Project description

Introduction

sklearn-onnx converts scikit-learn models to ONNX. Once in the ONNX format, you can use tools like ONNX Runtime for high performance scoring. All converters are tested with onnxruntime. Any external converter can be registered to convert scikit-learn pipeline including models or transformers coming from external libraries.

Documentation

Full documentation including tutorials is available at https://onnx.ai/sklearn-onnx/. Supported scikit-learn Models Last supported opset is 21.

You may also find answers in existing issues or submit a new one.

Installation

You can install from PyPi:

pip install skl2onnx

Or you can install from the source with the latest changes.

pip install git+https://github.com/onnx/sklearn-onnx.git

Getting started

# Train a model.
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

iris = load_iris()
X, y = iris.data, iris.target
X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForestClassifier()
clr.fit(X_train, y_train)

# Convert into ONNX format.
from skl2onnx import to_onnx

onx = to_onnx(clr, X[:1])
with open("rf_iris.onnx", "wb") as f:
    f.write(onx.SerializeToString())

# Compute the prediction with onnxruntime.
import onnxruntime as rt

sess = rt.InferenceSession("rf_iris.onnx", providers=["CPUExecutionProvider"])
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run([label_name], {input_name: X_test.astype(np.float32)})[0]

Contribute

We welcome contributions in the form of feedback, ideas, or code.

License

Apache License v2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

skl2onnx-1.18.0.tar.gz (935.2 kB view details)

Uploaded Source

Built Distribution

skl2onnx-1.18.0-py2.py3-none-any.whl (300.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file skl2onnx-1.18.0.tar.gz.

File metadata

  • Download URL: skl2onnx-1.18.0.tar.gz
  • Upload date:
  • Size: 935.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.11

File hashes

Hashes for skl2onnx-1.18.0.tar.gz
Algorithm Hash digest
SHA256 39ea4ae30c5c182355a1824467013158214444e0ce0b18f33338bd827d4fb00f
MD5 83c5915b090ec3f6956472cd21c0eec1
BLAKE2b-256 a9fbf91b284365bab4ddcb0f77f573e60dc96bc232648de997814e3ddd832e97

See more details on using hashes here.

File details

Details for the file skl2onnx-1.18.0-py2.py3-none-any.whl.

File metadata

  • Download URL: skl2onnx-1.18.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 300.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.11

File hashes

Hashes for skl2onnx-1.18.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1345d8a1d3aa4a11abfbed4bc984b777023dad85e1c9fe4eb727cba5ee0fcaa8
MD5 ee7745d4a4a8427da97359f72bf1fd6d
BLAKE2b-256 08dee8825727acd80484aa28080de62e4dc21f076d6887c10db49e2c8a66578f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page