A library to parse PMML models into Scikit-learn estimators.
Project description
sklearn-pmml-model
A library to effortlessly import models trained on different platforms and with programming languages into scikit-learn in Python. First export your model to PMML (widely supported). Next, load the exported PMML file with this library, and use the class as any other scikit-learn estimator.
Installation
The easiest way is to use pip:
$ pip install sklearn-pmml-model
Status
The library currently supports the following models:
Model | Classification | Regression | Categorical features |
---|---|---|---|
Decision Trees | ✅ | ✅ | ✅1 |
Random Forests | ✅ | ✅ | ✅1 |
Gradient Boosting | ✅ | ✅ | ✅1 |
Linear Regression | ✅ | ✅ | ✅3 |
Ridge | ✅2 | ✅ | ✅3 |
Lasso | ✅2 | ✅ | ✅3 |
ElasticNet | ✅2 | ✅ | ✅3 |
Gaussian Naive Bayes | ✅ | ✅3 | |
Support Vector Machines | ✅ | ✅ | ✅3 |
Nearest Neighbors | ✅ | ✅ | |
Neural Networks | ✅ | ✅ |
1 Categorical feature support using slightly modified internals, based on scikit-learn#12866.
2 These models differ only in training characteristics, the resulting model is of the same form. Classification is supported using PMMLLogisticRegression
for regression models and PMMLRidgeClassifier
for general regression models.
3 By one-hot encoding categorical features automatically.
Example
A minimal working example (using this PMML file) is shown below:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier
from sklearn_pmml_model.auto_detect import auto_detect_estimator
# Prepare the data
iris = load_iris()
X = pd.DataFrame(iris.data)
X.columns = np.array(iris.feature_names)
y = pd.Series(np.array(iris.target_names)[iris.target])
y.name = "Class"
Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.33, random_state=123)
# Specify the model type for the least overhead...
#clf = PMMLForestClassifier(pmml="models/randomForest.pmml")
# ...or simply let the library auto-detect the model type
clf = auto_detect_estimator(pmml="models/randomForest.pmml")
# Use the model as any other scikit-learn model
clf.predict(Xte)
clf.score(Xte, yte)
More examples can be found in the subsequent packages: tree, ensemble, linear_model, naive_bayes, svm, neighbors and neural_network.
Benchmark
Depending on the data set and model, sklearn-pmml-model
is between 5 and a 1000 times faster than competing libraries, by leveraging the optimization and industry-tested robustness of sklearn
. Source code for this benchmark can be found in the corresponding jupyter notebook.
Running times (load + predict, in seconds)
Linear model | Naive Bayes | Decision tree | Random Forest | Gradient boosting | ||
---|---|---|---|---|---|---|
Wine | PyPMML |
0.773291 | 0.77384 | 0.777425 | 0.895204 | 0.902355 |
sklearn-pmml-model |
0.005813 | 0.006357 | 0.002693 | 0.108882 | 0.121823 | |
Breast cancer | PyPMML |
3.849855 | 3.878448 | 3.83623 | 4.16358 | 4.13766 |
sklearn-pmml-model |
0.015723 | 0.011278 | 0.002807 | 0.146234 | 0.044016 |
Improvement
Linear model | Naive Bayes | Decision tree | Random Forest | Gradient boosting | ||
---|---|---|---|---|---|---|
Wine | Improvement | 133× | 122× | 289× | 8× | 7× |
Breast cancer | Improvement | 245× | 344× | 1,367× | 28× | 94× |
Development
Prerequisites
Tests can be run using Py.test. Grab a local copy of the source:
$ git clone http://github.com/iamDecode/sklearn-pmml-model
$ cd sklearn-pmml-model
create a virtual environment and activating it:
$ python3 -m venv venv
$ source venv/bin/activate
and install the dependencies:
$ pip install -r requirements.txt
The final step is to build the Cython extensions:
$ python setup.py build_ext --inplace
Testing
You can execute tests with py.test by running:
$ python setup.py pytest
Contributing
Feel free to make a contribution. Please read CONTRIBUTING.md for more details.
License
This project is licensed under the BSD 2-Clause License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file sklearn_pmml_model-1.0.7.tar.gz
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7.tar.gz
- Upload date:
- Size: 895.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a94b68600011abb5723b4744fbc5703cf4c88cdcd69c6fd4202ae0a787f81a7 |
|
MD5 | 69bf9f998c065abf5111dd06d1fb5c19 |
|
BLAKE2b-256 | 0cc90137ca1537b2943c336da08fa358cf1496b251f94c25c2ffd2acd8266523 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 458.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4c77898fac17be15d3b93ea39a8a77d59223f287bf97f1101bd8f79eb7a0a26 |
|
MD5 | b4851b957262339802b56d1ec22d3e2a |
|
BLAKE2b-256 | a0e732fd88bd687a92fa269feb244fa0ba69a95fd312ab52a37c9092bc4dbfa4 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl
- Upload date:
- Size: 408.9 kB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29ebf5849eb102a9b0c2e597f33dbb549f76a4cb2ccfc708b8603f4ecb5b41a6 |
|
MD5 | 8d5866bfd7704a999bfb294ff3e98b16 |
|
BLAKE2b-256 | bc12848bfbd3ad5c6d4a3b448439d28672ffb647fd4a3f3fce092590a7a2be88 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.12, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0744c4d13d7c499809cc79432f346a8e440c1703adc13a540e42f621a02116d4 |
|
MD5 | b513fa2eedbfaa2934e9d8c820d4a5e7 |
|
BLAKE2b-256 | f72cef38cb7f20e8420cea89a59fe6e63229ecc3f65a256af2c142a0cd5e5081 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.12, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b74725d1de4a148ac5946839f17b853a13b6db37ad4d68b4f3d256677ddd1d26 |
|
MD5 | 72950ff8e4d05a7d7fa60e0ab0989dfc |
|
BLAKE2b-256 | 6c61253cbbf9c344b1f1b577cd2d77677208fb9dba4e13f7bf8aa6886adccbb1 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2983f42c730e9204c9e24948c9a2c09d28e4ac1c7854ff306bcd2914ce349983 |
|
MD5 | bc5dfee6f1091b91c764970f621a8913 |
|
BLAKE2b-256 | 5282a0aa7d9a7cc340780de12e9538d075f3a002adb9d18170890ca33c3f622c |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09a6e88ddb0c6c55b61b504032cefee86d1bc730209f96fcaf088cd4f674361e |
|
MD5 | c39c9706739d6448a6e86d888497c831 |
|
BLAKE2b-256 | 5dff54abc2103ae354eb2c74a6b5bdd3901a8348530e7eb0a603b6fec385efc7 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 462.6 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2e535fcca510bda89d92720ec068f981789e96e073f730f044a444014a40544 |
|
MD5 | 2d5fdb143fcf84df12395194d5575d7b |
|
BLAKE2b-256 | 923623cd3317d830ea7da99d4641e4e3a45438ecb05954e389a63107d67e7234 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 482.8 kB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6f64d39cc33ccafcd64e2f471902e8cd0caffe3873d2004cd6ff751da2b37ba3 |
|
MD5 | c4a70b0924b63f54e588920b6489b700 |
|
BLAKE2b-256 | 7fccbf664c7682100eee0b4b6f58cc227693dccdae6dc8103ffde311a8481d31 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 462.9 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6af336ef1c2e5f2cbd57880e2e309945bbf31f74e8c0d04f45aec8475be63e5 |
|
MD5 | cf9402593250f4a9cf7c598c2f6eb887 |
|
BLAKE2b-256 | f6d121c741ed7becd2e5d17cdf7402fb9986907637db028498e96682b9c8483d |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl
- Upload date:
- Size: 411.6 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 046b1b8865496ae195f7b41b54e7e51b8f45760459adb5cb57d8f4c9e40bfe54 |
|
MD5 | b74a34e1eedf2e5c0b98fd5a13d04ea7 |
|
BLAKE2b-256 | 7c350e0e28f78137046a04e5c4ca087870f8e915221e866858854ad29776206b |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efb04a0bb16238f17ec8b0096e38beb2385d3036df023272c029882c22c9daad |
|
MD5 | e43e81b8941c5dccfc04450a86d5e7e6 |
|
BLAKE2b-256 | 09767e5996ba0aa9c5ae9d189884e50996b6300cce243245a08a9e97d8095345 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.11, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fde3535e4039446ac5b135fd857bd9844b64923b526a37b02cec007d284f73cd |
|
MD5 | 2cfb9fdc13a00eacad604ab65e629089 |
|
BLAKE2b-256 | 27c4700e2b7b9807d8302e5c1a8a9532aa0806c1765c614f41edc9503a90bc78 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aee63540e2349675afc536d30d7cafe6d22d4ec37023036d6effaa6f7e5affae |
|
MD5 | f5a5ccb09cfed44afdae037933b59bc5 |
|
BLAKE2b-256 | aea32e92c3f09a2cd67954a930be9cf4eead5f655e2667a41302cee14b743b47 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba171a4c929e407223d418dfa492523a740731d827a3a9164c6f9b6a7f794a8f |
|
MD5 | 76004f738357e947ad66ed5fee8d64e2 |
|
BLAKE2b-256 | e36643529fc4546247d69f84d95aac34dbd93785f7cf0d750c702dd90c4ab1d3 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 465.3 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f127933e7acb21584861d3bbaa8a5d6a151605f8aecd4f1135005fd163893dd7 |
|
MD5 | 864429d1ddbb83e99c727cdd4839a243 |
|
BLAKE2b-256 | 33a386c445af611326519e87c8168c76badfa1a15b4e64e14907f9e7cd8c77a1 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 482.8 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 86968b1732c86480c12ea33d3a689c1622c253b33622dc0be5c557a695749fca |
|
MD5 | 8f01381fe897d2ce64cae94f01ba5722 |
|
BLAKE2b-256 | 8684ccd6d488c16ca6c2d3e52e92395b28dd3422b646daf0bd9f785dbf69e798 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 461.9 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb148febd68de6d7b2e30f6953e56a9e8e06558f96911348a79cff9d15b749e4 |
|
MD5 | ed62c27d19f3a9384145af5104421a64 |
|
BLAKE2b-256 | ffa0937b27d39a26e71709f37b3be575d9d6a3edc515adf583fbb58af47ca567 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl
- Upload date:
- Size: 413.0 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74e936efdce6c29ad1a411418a9bacc6febadc32501f433834142db4fcc8e5e3 |
|
MD5 | b413b1cde48c8d7cac3ef76fce4b1b00 |
|
BLAKE2b-256 | 746040d464d6021ca51b183f906791a6b2d10910352533bd9cc07b55ff60e936 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f45100589ede9a37bd9c276486cd37f3caf4114674457ce71f8ed8f4ccd507d0 |
|
MD5 | ea28a80ea05a4f240bd505945de02786 |
|
BLAKE2b-256 | 08bff066c58283d18973e2f3257f3f69edc3d372a4ac5583f8bfc1f6c45458e5 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.10, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | deebeb05c0cc2b4205dbca535e3574f159e856252c00e2e9dc202dd5ca21fdbd |
|
MD5 | 6f48bcd168d0a157ba8c69443a1c6ed0 |
|
BLAKE2b-256 | 252ac1c786a8d38f624917ec23e5bc6c2969c0d925d7778c44bf6f9339dd16c9 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dc18b8c745c7b982044a27b889fb15dc8e02d16f4775f02bf0bd24cdfca1d60 |
|
MD5 | 400a2eddf688f76bc554236ce2be4df1 |
|
BLAKE2b-256 | e6e05d299775859afc5df0814ccefb52324368594899c86b773382cafd576ec5 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c63e3b53bdb499fafb5b601a42fca7d70865a7a5f777906f17cb670eeb13577 |
|
MD5 | 02896d1d28048635ab6840c6e92cccfa |
|
BLAKE2b-256 | 006ce4bdd4d6926c82451cbad5228430642029adac4c83b4e9e00f8a7c82a60f |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 464.9 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b18e2c0c20fcc748565769db7053fa2f0543cb36354654210a2d205fe3ea47ca |
|
MD5 | 5455caf3882f1fffd69ee5520d657419 |
|
BLAKE2b-256 | 139a216169cc3e5420f13e5adc817c26ce11a9accb21d182f38d809092295456 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 481.9 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 967d142099d4716990e8b78a2deeba2cb489325f8a01af40eb9a2f066f411993 |
|
MD5 | 78163381bb5629dc93050e41b6ace676 |
|
BLAKE2b-256 | c74e905d0a9e7986cd098f3d869e2d497cfa637d431fcca4131e4191435f89a2 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 465.4 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 939c82719b41c79f970ba475d90195491ebcc1764f2aa0b78cfd069c12269ef4 |
|
MD5 | e43d1ea39f03cab6bc8209db4572f4f4 |
|
BLAKE2b-256 | 53bc3c89d6ab835260036a6a59ccd244b6443838d458fbd124a3f98d9d778c94 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl
- Upload date:
- Size: 416.8 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c903a7686bd749eec6ec9d9b80bcfd55f3de3d0f54ca2796d119bc001275aa00 |
|
MD5 | 0dffdc0f0193d5302c7e4b9485bfcf9c |
|
BLAKE2b-256 | e45bcc1da065c6c1cf13fc5c5b168f6333d9d23fcda3515638b1613d97e7a21c |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8e21186c43657dcc8ab135936ebb2c32f54c380523446ec0a208cd77d9e07e4 |
|
MD5 | 060dcbb9ce73125c652202149db2aa47 |
|
BLAKE2b-256 | a00dca60221244a48bb4953a90ebb6713ba5bec7c7408898a753133d12e1a2c7 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.9, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdab2a04e1220eb841c62058eeb690878ad67394afb1799173b373f74583047b |
|
MD5 | 3f32e554c5755f7258e9ac72c4e003e5 |
|
BLAKE2b-256 | 2b9540da3a76e21d33a9374f9241ec9ba5463174f5b5fc1b4cb7c262c9f1d12d |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | caadfd2844acc447c8854cbed175efa77fc7ebbb3e49b46d9ae8cac2e628a1b4 |
|
MD5 | fee53d336144c6fa845cf7e6308739b4 |
|
BLAKE2b-256 | dd188256697fa122646a98d9c6f7c5c19c8e12cbe4de6e8cb7e2ca8228c75b95 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7dde19f2a9752007b657e708e56900758c7a30daaf828891ca6423292bd188bb |
|
MD5 | 3d6fe0b7f95aba7185fac1dc82893579 |
|
BLAKE2b-256 | a1dd74a2af046186e21995b44ba3c75677dac2b241d6caa0f101dc5964e4bfd8 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 468.4 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7f4b2a0c91c530fa01f002c202abcaa145d26e208b7abc13643717f63ab8a39 |
|
MD5 | 2dd7b657fd491406047bfe116b807939 |
|
BLAKE2b-256 | 63e4d95fcd96d354f6d54f7e347b809aab4941b0c226cc12fa392cae53c0cce6 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 485.4 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29efa5388130ff16d03ed2f5d553096a48de70b051b72863e4e074a299add9c8 |
|
MD5 | 5689894c3ea283477ed6fc0941bd8114 |
|
BLAKE2b-256 | a92ce02db20b71086046891b64e84630b86dbcf21028255a6cc5ec1e94c7395e |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 465.4 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a1dc244fec0b130b187e3055e340fe9da68b6aa107709b356ef395a9b4acd59 |
|
MD5 | 8f46e16495e988be99fcad21e5c815cd |
|
BLAKE2b-256 | 193a63449847b35e774c2472391882928cd7472d5006191d3c66b31a9dc2e27c |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl
- Upload date:
- Size: 416.6 kB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88ccd1674bd7f99a7eb41ea3deadf0a136fa56a904c2a090d05c58d59bd40363 |
|
MD5 | 1daee7d2da3626cdb1b3315e4caa24cb |
|
BLAKE2b-256 | c33159e528def65eab6c38c47ee5bdd77188671b84b450a85f69bd105906f116 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.3 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd5f29ad1644d718a2f0ef441e90897bde527c433657268a120934f0425a8567 |
|
MD5 | 8736b26cc424e95b121ec0a2cabf66fb |
|
BLAKE2b-256 | 78cadcffc3e493709d6e20530c4dc4951f09f4a7ee3680759d853a4247e6a46a |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.2 MB
- Tags: CPython 3.8, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 366032aaf1424f8c643bd8f878cfecec29aeb496c1c44c36333238352f2f3b1a |
|
MD5 | 9784fc122b29a32481a587f671119952 |
|
BLAKE2b-256 | b3a78323eeb7c85881a6aaaab9340529d04f463cef175732c73b38052f5bb682 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | adb9ca263f90e2154e52ebec6d8adf9e3f7a349051257b2b8a421ed74a3509b2 |
|
MD5 | f4b53fe8ec79da6cbd9282645d880e0d |
|
BLAKE2b-256 | 554cdbff32993bc63a2e17c4990abae7b540faf0c338ada312985f6cf0aa7e49 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb878272a7538280acd032ed183bdc6f74739a662f65d2432c70658c084ea73e |
|
MD5 | cb842ad5167fe6d7ef77393fd5794cf2 |
|
BLAKE2b-256 | 7752ea5d7c1579cee3450d42d6394e6bcd98557ca1eb2d30c1a53e75ad5fe239 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 472.8 kB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b36f665a0439481c1ded13cf118c90e60993cbd8c8bfd18b050d6b30017a44a4 |
|
MD5 | 6013155a41c1c2add627ba2ae12bd7dc |
|
BLAKE2b-256 | 89e585ee79dec95b0867316cbf1350aa8dd31ea6cdd8ee22b2d2a977cfeab47d |
File details
Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 490.4 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bfbc789bc2c6ffb422ccb8e48fcff31e02a2c77172e230c5a6c71c4b660f0e64 |
|
MD5 | a638aa872995ce496a343d704adee5e0 |
|
BLAKE2b-256 | be8b5dbddecd53c6aa8c8080bed9cf0b3e4907c0ce2a4c8d98ee3b1601740465 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 463.3 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d8bbb88dc375a9d86dfd9988f533a45088ded9c9b82b2e302af20ba654f1acbf |
|
MD5 | 2f44d9b50bf2e9d1f18297109087e6f2 |
|
BLAKE2b-256 | c72d8797fc5dccb3cc7e5672b670ed8f84158c7889026e4cb0d4655d42ad5b93 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl
- Upload date:
- Size: 412.7 kB
- Tags: CPython 3.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c68fa715ede5dcc2a9c47e835c8280e48f24b4cbc4405f313477fd7b57d2d76f |
|
MD5 | bd707529e7bb7f423d1bec52123479ee |
|
BLAKE2b-256 | 7f9174fa6394468169cf4a7fbeb15290df213da106b6f37ec2e7dbf2c36efc1a |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97b388fcd1b0e2051662df4cfdf59d9a99de944931059cdc4e445bd9d00b5a87 |
|
MD5 | fbdc565282e8403f0805faf238774464 |
|
BLAKE2b-256 | 4e4ef04beaa60a43ea8e1c7672b4f5b69d88abe2e938ec471ebeaaebd588ca7b |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl
- Upload date:
- Size: 2.0 MB
- Tags: CPython 3.7m, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 75b46a2f8bd6994fd35d3d3145c62c1fc5c08bba960abf492447bd9b3e6a233b |
|
MD5 | 812bae076d2d5cc5a3cdf5a96a31e837 |
|
BLAKE2b-256 | dde67ea0a6618d00dcd1a6da3d7c93c9a59221b65651482c83cebf37f620495d |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0858beb4ab3eeb6bbefe727c2ee800c07af2d7687e18fb4d8aa41de983b93656 |
|
MD5 | a31cc11daa600b05746a1d1566421968 |
|
BLAKE2b-256 | 307706801482c6b3c65d1f9d194dbc2afde4774ecd39f3c44b083d08722bc026 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60b1ccdccfec9c2cd8dcfe5b37363e1b51307c436b059189b40b7e442b25aa04 |
|
MD5 | 69298b80b7de1eb400dd21d4d7814c34 |
|
BLAKE2b-256 | 13e44fb87d2bd93b7fed8cb584b5ff67e4773d04b2fef54ce9d442f5c34fd5a8 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 487.4 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca269ea15c68fc522ba77c14ffcc1da516e134bd0ee3cb1875679a2e6190cb81 |
|
MD5 | 66e76b692bb892d486a2ae3e87d64f6a |
|
BLAKE2b-256 | da5a57b9bea3be365edfb30ba1168f6f58aec46eb41bf851723ad3b371f3c782 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 454.4 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9fd220b0353d1a635ddfcdedcbc38b6a53157b71b46fbe20690d2d399f52f8ce |
|
MD5 | 1d1bf097d81d77920b2472939ee95bf3 |
|
BLAKE2b-256 | 3f08562b42141f632ba07b79488c10bd45442f462e71cd1e4536f6c50ba5a44b |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl
- Upload date:
- Size: 404.2 kB
- Tags: CPython 3.6m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ca5b39b2adda440973c17e986a74c40c4562a691d1177d6c11a88ef0b889bf7 |
|
MD5 | 47b356aefdb96e3ca6808ef9d0f72441 |
|
BLAKE2b-256 | f893056912f9d0f63f9a0b08d4e8a268fd265c030a110453a596daf350183cc7 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 34b6c975512817413de09b4b803fceba77f2d919ddacc9d38917aa92e2dfa20e |
|
MD5 | a1d81cdfbd3da982d42297f88cee8021 |
|
BLAKE2b-256 | 1a7a3aac9315b843219078958a4ce91c9703e89ed1228d8b7b1601d21b008bce |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl
- Upload date:
- Size: 1.9 MB
- Tags: CPython 3.6m, musllinux: musl 1.1+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5625616ea7b2c0bbc2320d88b6eed75c6df920760d64261163fd9d996b40ae83 |
|
MD5 | 326701dba4205d3bc2c9ce03926610de |
|
BLAKE2b-256 | 1f5e8e133acb99ab0effe45a6398c3d250e66d65448b4c95b3c21034007213c1 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 122b6799f93f86edbc22fc5e0a3f3a9e0189d08c1a16b0596fe4a3b0db711d10 |
|
MD5 | f45cb6442ba7c1698410a11c0f215a9e |
|
BLAKE2b-256 | dec263cde9572445fcff10cc79efdb147ccfe825139c950c712227c1ede06392 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
- Upload date:
- Size: 1.7 MB
- Tags: CPython 3.6m, manylinux: glibc 2.17+ i686, manylinux: glibc 2.5+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd7a94dcf1a7bc5c27c6d60901760ea4b909b0e6bdc749c67e4a9e9fb94b96b8 |
|
MD5 | ce44ee617a2f318b9f6b2b0d28e7b2f6 |
|
BLAKE2b-256 | 7fe9c4d3da03d678c9e33c758ae32f943859e102e1d11d23430dac7c713eea77 |
File details
Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 473.1 kB
- Tags: CPython 3.6m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 045c0223eeb30ee28ffe794ed2550bea3c4d6d3c0b233a4703f24ce476424e8f |
|
MD5 | d16f18743b19b9926d2b01bbb88193b4 |
|
BLAKE2b-256 | 172062c7560852da6e9b69312d7ed539adc7d87f60350ce410aac9a14ec7ccf8 |