Skip to main content

A library to parse PMML models into Scikit-learn estimators.

Project description

sklearn-pmml-model

PyPI version codecov CircleCI ReadTheDocs

A library to effortlessly import models trained on different platforms and with programming languages into scikit-learn in Python. First export your model to PMML (widely supported). Next, load the exported PMML file with this library, and use the class as any other scikit-learn estimator.

Installation

The easiest way is to use pip:

$ pip install sklearn-pmml-model

Status

The library currently supports the following models:

Model Classification Regression Categorical features
Decision Trees 1
Random Forests 1
Gradient Boosting 1
Linear Regression 3
Ridge 2 3
Lasso 2 3
ElasticNet 2 3
Gaussian Naive Bayes 3
Support Vector Machines 3
Nearest Neighbors
Neural Networks

1 Categorical feature support using slightly modified internals, based on scikit-learn#12866.

2 These models differ only in training characteristics, the resulting model is of the same form. Classification is supported using PMMLLogisticRegression for regression models and PMMLRidgeClassifier for general regression models.

3 By one-hot encoding categorical features automatically.

Example

A minimal working example (using this PMML file) is shown below:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn_pmml_model.ensemble import PMMLForestClassifier
from sklearn_pmml_model.auto_detect import auto_detect_estimator

# Prepare the data
iris = load_iris()
X = pd.DataFrame(iris.data)
X.columns = np.array(iris.feature_names)
y = pd.Series(np.array(iris.target_names)[iris.target])
y.name = "Class"
Xtr, Xte, ytr, yte = train_test_split(X, y, test_size=0.33, random_state=123)

# Specify the model type for the least overhead...
#clf = PMMLForestClassifier(pmml="models/randomForest.pmml")

# ...or simply let the library auto-detect the model type
clf = auto_detect_estimator(pmml="models/randomForest.pmml")

# Use the model as any other scikit-learn model
clf.predict(Xte)
clf.score(Xte, yte)

More examples can be found in the subsequent packages: tree, ensemble, linear_model, naive_bayes, svm, neighbors and neural_network.

Benchmark

Depending on the data set and model, sklearn-pmml-model is between 5 and a 1000 times faster than competing libraries, by leveraging the optimization and industry-tested robustness of sklearn. Source code for this benchmark can be found in the corresponding jupyter notebook.

Running times (load + predict, in seconds)

Linear model Naive Bayes Decision tree Random Forest Gradient boosting
Wine PyPMML 0.773291 0.77384 0.777425 0.895204 0.902355
sklearn-pmml-model 0.005813 0.006357 0.002693 0.108882 0.121823
Breast cancer PyPMML 3.849855 3.878448 3.83623 4.16358 4.13766
sklearn-pmml-model 0.015723 0.011278 0.002807 0.146234 0.044016

Improvement

Linear model Naive Bayes Decision tree Random Forest Gradient boosting
Wine Improvement 133× 122× 289×
Breast cancer Improvement 245× 344× 1,367× 28× 94×

Development

Prerequisites

Tests can be run using Py.test. Grab a local copy of the source:

$ git clone http://github.com/iamDecode/sklearn-pmml-model
$ cd sklearn-pmml-model

create a virtual environment and activating it:

$ python3 -m venv venv
$ source venv/bin/activate

and install the dependencies:

$ pip install -r requirements.txt

The final step is to build the Cython extensions:

$ python setup.py build_ext --inplace

Testing

You can execute tests with py.test by running:

$ python setup.py pytest

Contributing

Feel free to make a contribution. Please read CONTRIBUTING.md for more details.

License

This project is licensed under the BSD 2-Clause License - see the LICENSE file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn_pmml_model-1.0.7.tar.gz (895.4 kB view details)

Uploaded Source

Built Distributions

sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl (458.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl (408.9 kB view details)

Uploaded CPython 3.12 Windows x86

sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl (462.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl (482.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl (462.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl (411.6 kB view details)

Uploaded CPython 3.11 Windows x86

sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl (465.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl (482.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl (461.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl (413.0 kB view details)

Uploaded CPython 3.10 Windows x86

sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl (464.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl (481.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl (465.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl (416.8 kB view details)

Uploaded CPython 3.9 Windows x86

sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl (468.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl (485.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl (465.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl (416.6 kB view details)

Uploaded CPython 3.8 Windows x86

sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl (472.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl (490.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl (463.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl (412.7 kB view details)

Uploaded CPython 3.7m Windows x86

sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl (487.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl (454.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl (404.2 kB view details)

Uploaded CPython 3.6m Windows x86

sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl (1.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl (473.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file sklearn_pmml_model-1.0.7.tar.gz.

File metadata

  • Download URL: sklearn_pmml_model-1.0.7.tar.gz
  • Upload date:
  • Size: 895.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for sklearn_pmml_model-1.0.7.tar.gz
Algorithm Hash digest
SHA256 7a94b68600011abb5723b4744fbc5703cf4c88cdcd69c6fd4202ae0a787f81a7
MD5 69bf9f998c065abf5111dd06d1fb5c19
BLAKE2b-256 0cc90137ca1537b2943c336da08fa358cf1496b251f94c25c2ffd2acd8266523

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f4c77898fac17be15d3b93ea39a8a77d59223f287bf97f1101bd8f79eb7a0a26
MD5 b4851b957262339802b56d1ec22d3e2a
BLAKE2b-256 a0e732fd88bd687a92fa269feb244fa0ba69a95fd312ab52a37c9092bc4dbfa4

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 29ebf5849eb102a9b0c2e597f33dbb549f76a4cb2ccfc708b8603f4ecb5b41a6
MD5 8d5866bfd7704a999bfb294ff3e98b16
BLAKE2b-256 bc12848bfbd3ad5c6d4a3b448439d28672ffb647fd4a3f3fce092590a7a2be88

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0744c4d13d7c499809cc79432f346a8e440c1703adc13a540e42f621a02116d4
MD5 b513fa2eedbfaa2934e9d8c820d4a5e7
BLAKE2b-256 f72cef38cb7f20e8420cea89a59fe6e63229ecc3f65a256af2c142a0cd5e5081

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b74725d1de4a148ac5946839f17b853a13b6db37ad4d68b4f3d256677ddd1d26
MD5 72950ff8e4d05a7d7fa60e0ab0989dfc
BLAKE2b-256 6c61253cbbf9c344b1f1b577cd2d77677208fb9dba4e13f7bf8aa6886adccbb1

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2983f42c730e9204c9e24948c9a2c09d28e4ac1c7854ff306bcd2914ce349983
MD5 bc5dfee6f1091b91c764970f621a8913
BLAKE2b-256 5282a0aa7d9a7cc340780de12e9538d075f3a002adb9d18170890ca33c3f622c

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09a6e88ddb0c6c55b61b504032cefee86d1bc730209f96fcaf088cd4f674361e
MD5 c39c9706739d6448a6e86d888497c831
BLAKE2b-256 5dff54abc2103ae354eb2c74a6b5bdd3901a8348530e7eb0a603b6fec385efc7

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2e535fcca510bda89d92720ec068f981789e96e073f730f044a444014a40544
MD5 2d5fdb143fcf84df12395194d5575d7b
BLAKE2b-256 923623cd3317d830ea7da99d4641e4e3a45438ecb05954e389a63107d67e7234

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f64d39cc33ccafcd64e2f471902e8cd0caffe3873d2004cd6ff751da2b37ba3
MD5 c4a70b0924b63f54e588920b6489b700
BLAKE2b-256 7fccbf664c7682100eee0b4b6f58cc227693dccdae6dc8103ffde311a8481d31

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b6af336ef1c2e5f2cbd57880e2e309945bbf31f74e8c0d04f45aec8475be63e5
MD5 cf9402593250f4a9cf7c598c2f6eb887
BLAKE2b-256 f6d121c741ed7becd2e5d17cdf7402fb9986907637db028498e96682b9c8483d

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 046b1b8865496ae195f7b41b54e7e51b8f45760459adb5cb57d8f4c9e40bfe54
MD5 b74a34e1eedf2e5c0b98fd5a13d04ea7
BLAKE2b-256 7c350e0e28f78137046a04e5c4ca087870f8e915221e866858854ad29776206b

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 efb04a0bb16238f17ec8b0096e38beb2385d3036df023272c029882c22c9daad
MD5 e43e81b8941c5dccfc04450a86d5e7e6
BLAKE2b-256 09767e5996ba0aa9c5ae9d189884e50996b6300cce243245a08a9e97d8095345

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fde3535e4039446ac5b135fd857bd9844b64923b526a37b02cec007d284f73cd
MD5 2cfb9fdc13a00eacad604ab65e629089
BLAKE2b-256 27c4700e2b7b9807d8302e5c1a8a9532aa0806c1765c614f41edc9503a90bc78

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aee63540e2349675afc536d30d7cafe6d22d4ec37023036d6effaa6f7e5affae
MD5 f5a5ccb09cfed44afdae037933b59bc5
BLAKE2b-256 aea32e92c3f09a2cd67954a930be9cf4eead5f655e2667a41302cee14b743b47

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba171a4c929e407223d418dfa492523a740731d827a3a9164c6f9b6a7f794a8f
MD5 76004f738357e947ad66ed5fee8d64e2
BLAKE2b-256 e36643529fc4546247d69f84d95aac34dbd93785f7cf0d750c702dd90c4ab1d3

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f127933e7acb21584861d3bbaa8a5d6a151605f8aecd4f1135005fd163893dd7
MD5 864429d1ddbb83e99c727cdd4839a243
BLAKE2b-256 33a386c445af611326519e87c8168c76badfa1a15b4e64e14907f9e7cd8c77a1

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86968b1732c86480c12ea33d3a689c1622c253b33622dc0be5c557a695749fca
MD5 8f01381fe897d2ce64cae94f01ba5722
BLAKE2b-256 8684ccd6d488c16ca6c2d3e52e92395b28dd3422b646daf0bd9f785dbf69e798

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cb148febd68de6d7b2e30f6953e56a9e8e06558f96911348a79cff9d15b749e4
MD5 ed62c27d19f3a9384145af5104421a64
BLAKE2b-256 ffa0937b27d39a26e71709f37b3be575d9d6a3edc515adf583fbb58af47ca567

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 74e936efdce6c29ad1a411418a9bacc6febadc32501f433834142db4fcc8e5e3
MD5 b413b1cde48c8d7cac3ef76fce4b1b00
BLAKE2b-256 746040d464d6021ca51b183f906791a6b2d10910352533bd9cc07b55ff60e936

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f45100589ede9a37bd9c276486cd37f3caf4114674457ce71f8ed8f4ccd507d0
MD5 ea28a80ea05a4f240bd505945de02786
BLAKE2b-256 08bff066c58283d18973e2f3257f3f69edc3d372a4ac5583f8bfc1f6c45458e5

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 deebeb05c0cc2b4205dbca535e3574f159e856252c00e2e9dc202dd5ca21fdbd
MD5 6f48bcd168d0a157ba8c69443a1c6ed0
BLAKE2b-256 252ac1c786a8d38f624917ec23e5bc6c2969c0d925d7778c44bf6f9339dd16c9

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dc18b8c745c7b982044a27b889fb15dc8e02d16f4775f02bf0bd24cdfca1d60
MD5 400a2eddf688f76bc554236ce2be4df1
BLAKE2b-256 e6e05d299775859afc5df0814ccefb52324368594899c86b773382cafd576ec5

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c63e3b53bdb499fafb5b601a42fca7d70865a7a5f777906f17cb670eeb13577
MD5 02896d1d28048635ab6840c6e92cccfa
BLAKE2b-256 006ce4bdd4d6926c82451cbad5228430642029adac4c83b4e9e00f8a7c82a60f

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b18e2c0c20fcc748565769db7053fa2f0543cb36354654210a2d205fe3ea47ca
MD5 5455caf3882f1fffd69ee5520d657419
BLAKE2b-256 139a216169cc3e5420f13e5adc817c26ce11a9accb21d182f38d809092295456

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 967d142099d4716990e8b78a2deeba2cb489325f8a01af40eb9a2f066f411993
MD5 78163381bb5629dc93050e41b6ace676
BLAKE2b-256 c74e905d0a9e7986cd098f3d869e2d497cfa637d431fcca4131e4191435f89a2

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 939c82719b41c79f970ba475d90195491ebcc1764f2aa0b78cfd069c12269ef4
MD5 e43d1ea39f03cab6bc8209db4572f4f4
BLAKE2b-256 53bc3c89d6ab835260036a6a59ccd244b6443838d458fbd124a3f98d9d778c94

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c903a7686bd749eec6ec9d9b80bcfd55f3de3d0f54ca2796d119bc001275aa00
MD5 0dffdc0f0193d5302c7e4b9485bfcf9c
BLAKE2b-256 e45bcc1da065c6c1cf13fc5c5b168f6333d9d23fcda3515638b1613d97e7a21c

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b8e21186c43657dcc8ab135936ebb2c32f54c380523446ec0a208cd77d9e07e4
MD5 060dcbb9ce73125c652202149db2aa47
BLAKE2b-256 a00dca60221244a48bb4953a90ebb6713ba5bec7c7408898a753133d12e1a2c7

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cdab2a04e1220eb841c62058eeb690878ad67394afb1799173b373f74583047b
MD5 3f32e554c5755f7258e9ac72c4e003e5
BLAKE2b-256 2b9540da3a76e21d33a9374f9241ec9ba5463174f5b5fc1b4cb7c262c9f1d12d

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caadfd2844acc447c8854cbed175efa77fc7ebbb3e49b46d9ae8cac2e628a1b4
MD5 fee53d336144c6fa845cf7e6308739b4
BLAKE2b-256 dd188256697fa122646a98d9c6f7c5c19c8e12cbe4de6e8cb7e2ca8228c75b95

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7dde19f2a9752007b657e708e56900758c7a30daaf828891ca6423292bd188bb
MD5 3d6fe0b7f95aba7185fac1dc82893579
BLAKE2b-256 a1dd74a2af046186e21995b44ba3c75677dac2b241d6caa0f101dc5964e4bfd8

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7f4b2a0c91c530fa01f002c202abcaa145d26e208b7abc13643717f63ab8a39
MD5 2dd7b657fd491406047bfe116b807939
BLAKE2b-256 63e4d95fcd96d354f6d54f7e347b809aab4941b0c226cc12fa392cae53c0cce6

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29efa5388130ff16d03ed2f5d553096a48de70b051b72863e4e074a299add9c8
MD5 5689894c3ea283477ed6fc0941bd8114
BLAKE2b-256 a92ce02db20b71086046891b64e84630b86dbcf21028255a6cc5ec1e94c7395e

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4a1dc244fec0b130b187e3055e340fe9da68b6aa107709b356ef395a9b4acd59
MD5 8f46e16495e988be99fcad21e5c815cd
BLAKE2b-256 193a63449847b35e774c2472391882928cd7472d5006191d3c66b31a9dc2e27c

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 88ccd1674bd7f99a7eb41ea3deadf0a136fa56a904c2a090d05c58d59bd40363
MD5 1daee7d2da3626cdb1b3315e4caa24cb
BLAKE2b-256 c33159e528def65eab6c38c47ee5bdd77188671b84b450a85f69bd105906f116

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd5f29ad1644d718a2f0ef441e90897bde527c433657268a120934f0425a8567
MD5 8736b26cc424e95b121ec0a2cabf66fb
BLAKE2b-256 78cadcffc3e493709d6e20530c4dc4951f09f4a7ee3680759d853a4247e6a46a

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 366032aaf1424f8c643bd8f878cfecec29aeb496c1c44c36333238352f2f3b1a
MD5 9784fc122b29a32481a587f671119952
BLAKE2b-256 b3a78323eeb7c85881a6aaaab9340529d04f463cef175732c73b38052f5bb682

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adb9ca263f90e2154e52ebec6d8adf9e3f7a349051257b2b8a421ed74a3509b2
MD5 f4b53fe8ec79da6cbd9282645d880e0d
BLAKE2b-256 554cdbff32993bc63a2e17c4990abae7b540faf0c338ada312985f6cf0aa7e49

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fb878272a7538280acd032ed183bdc6f74739a662f65d2432c70658c084ea73e
MD5 cb842ad5167fe6d7ef77393fd5794cf2
BLAKE2b-256 7752ea5d7c1579cee3450d42d6394e6bcd98557ca1eb2d30c1a53e75ad5fe239

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b36f665a0439481c1ded13cf118c90e60993cbd8c8bfd18b050d6b30017a44a4
MD5 6013155a41c1c2add627ba2ae12bd7dc
BLAKE2b-256 89e585ee79dec95b0867316cbf1350aa8dd31ea6cdd8ee22b2d2a977cfeab47d

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfbc789bc2c6ffb422ccb8e48fcff31e02a2c77172e230c5a6c71c4b660f0e64
MD5 a638aa872995ce496a343d704adee5e0
BLAKE2b-256 be8b5dbddecd53c6aa8c8080bed9cf0b3e4907c0ce2a4c8d98ee3b1601740465

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d8bbb88dc375a9d86dfd9988f533a45088ded9c9b82b2e302af20ba654f1acbf
MD5 2f44d9b50bf2e9d1f18297109087e6f2
BLAKE2b-256 c72d8797fc5dccb3cc7e5672b670ed8f84158c7889026e4cb0d4655d42ad5b93

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c68fa715ede5dcc2a9c47e835c8280e48f24b4cbc4405f313477fd7b57d2d76f
MD5 bd707529e7bb7f423d1bec52123479ee
BLAKE2b-256 7f9174fa6394468169cf4a7fbeb15290df213da106b6f37ec2e7dbf2c36efc1a

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 97b388fcd1b0e2051662df4cfdf59d9a99de944931059cdc4e445bd9d00b5a87
MD5 fbdc565282e8403f0805faf238774464
BLAKE2b-256 4e4ef04beaa60a43ea8e1c7672b4f5b69d88abe2e938ec471ebeaaebd588ca7b

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 75b46a2f8bd6994fd35d3d3145c62c1fc5c08bba960abf492447bd9b3e6a233b
MD5 812bae076d2d5cc5a3cdf5a96a31e837
BLAKE2b-256 dde67ea0a6618d00dcd1a6da3d7c93c9a59221b65651482c83cebf37f620495d

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0858beb4ab3eeb6bbefe727c2ee800c07af2d7687e18fb4d8aa41de983b93656
MD5 a31cc11daa600b05746a1d1566421968
BLAKE2b-256 307706801482c6b3c65d1f9d194dbc2afde4774ecd39f3c44b083d08722bc026

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 60b1ccdccfec9c2cd8dcfe5b37363e1b51307c436b059189b40b7e442b25aa04
MD5 69298b80b7de1eb400dd21d4d7814c34
BLAKE2b-256 13e44fb87d2bd93b7fed8cb584b5ff67e4773d04b2fef54ce9d442f5c34fd5a8

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca269ea15c68fc522ba77c14ffcc1da516e134bd0ee3cb1875679a2e6190cb81
MD5 66e76b692bb892d486a2ae3e87d64f6a
BLAKE2b-256 da5a57b9bea3be365edfb30ba1168f6f58aec46eb41bf851723ad3b371f3c782

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9fd220b0353d1a635ddfcdedcbc38b6a53157b71b46fbe20690d2d399f52f8ce
MD5 1d1bf097d81d77920b2472939ee95bf3
BLAKE2b-256 3f08562b42141f632ba07b79488c10bd45442f462e71cd1e4536f6c50ba5a44b

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8ca5b39b2adda440973c17e986a74c40c4562a691d1177d6c11a88ef0b889bf7
MD5 47b356aefdb96e3ca6808ef9d0f72441
BLAKE2b-256 f893056912f9d0f63f9a0b08d4e8a268fd265c030a110453a596daf350183cc7

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 34b6c975512817413de09b4b803fceba77f2d919ddacc9d38917aa92e2dfa20e
MD5 a1d81cdfbd3da982d42297f88cee8021
BLAKE2b-256 1a7a3aac9315b843219078958a4ce91c9703e89ed1228d8b7b1601d21b008bce

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5625616ea7b2c0bbc2320d88b6eed75c6df920760d64261163fd9d996b40ae83
MD5 326701dba4205d3bc2c9ce03926610de
BLAKE2b-256 1f5e8e133acb99ab0effe45a6398c3d250e66d65448b4c95b3c21034007213c1

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 122b6799f93f86edbc22fc5e0a3f3a9e0189d08c1a16b0596fe4a3b0db711d10
MD5 f45cb6442ba7c1698410a11c0f215a9e
BLAKE2b-256 dec263cde9572445fcff10cc79efdb147ccfe825139c950c712227c1ede06392

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bd7a94dcf1a7bc5c27c6d60901760ea4b909b0e6bdc749c67e4a9e9fb94b96b8
MD5 ce44ee617a2f318b9f6b2b0d28e7b2f6
BLAKE2b-256 7fe9c4d3da03d678c9e33c758ae32f943859e102e1d11d23430dac7c713eea77

See more details on using hashes here.

File details

Details for the file sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_pmml_model-1.0.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 045c0223eeb30ee28ffe794ed2550bea3c4d6d3c0b233a4703f24ce476424e8f
MD5 d16f18743b19b9926d2b01bbb88193b4
BLAKE2b-256 172062c7560852da6e9b69312d7ed539adc7d87f60350ce410aac9a14ec7ccf8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page