Skip to main content

A library that allows serialization of SciKit-Learn estimators into PMML

Project description

[![Build Status](https://travis-ci.org/alex-pirozhenko/sklearn-pmml.svg)](https://travis-ci.org/alex-pirozhenko/sklearn-pmml) [![Join the chat at https://gitter.im/alex-pirozhenko/sklearn-pmml](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/alex-pirozhenko/sklearn-pmml?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

# sklearn-pmml

A library that allows serialization of SciKit-Learn estimators into PMML

# Installation The easiest way is to use pip: ` pip install sklearn-pmml `

# Supported models - DecisionTreeClassifier - DecisionTreeRegressor - GradientBoostingClassifier - RandomForestClassifier

# PMML output

## Classification Classifier converters can only operate with categorical outputs, and for each categorical output variable `varname` the PMML output contains the following outputs: - categorical `varname` for the predicted label of the instance - double `varname.label` for the probability for a given label

## Regression Regression model PMML outputs the numeric response variable named as the output variable

Project details


Release history Release notifications

This version
History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

History Node

0.0.3

History Node

0.0.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
sklearn_pmml-0.1.2-py2.7.egg (285.5 kB) Copy SHA256 hash SHA256 Egg 2.7 Oct 12, 2015
sklearn-pmml-0.1.2.tar.gz (128.6 kB) Copy SHA256 hash SHA256 Source None Oct 12, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page