Skip to main content

No project description provided

Project description

Documentation Status Conda forge release

This module provides quantile machine learning models for python, in a plug-and-play fashion in the sklearn environment. This means that practically the only dependency is sklearn and all its functionality is applicable to the here provided models without code changes.

The models implemented here share the trait that they are trained in exactly the same way as their non-quantile counterpart. The quantile information is only used in the prediction phase. The advantage of this (over for example Gradient Boosting Quantile Regression) is that several quantiles can be predicted at once without the need for retraining the model, which overall leads to a significantly faster workflow. Note that accuracy of doing this depends on the data. As can be seen in the example in the documentation: with certain data characteristics different quantiles might require different parameter optimisation for optimal performance. This is obviously possible with the implemented models here, but this requires the use of a single quantile during prediction, thus losing the speed advantage described above.

For guidance see docs (through the link in the badge). They include an example that for quantile regression forests in exactly the same template as used for Gradient Boosting Quantile Regression in sklearn for comparability.

Implemented:

  • Random Forest Quantile Regression

    • RandomForestQuantileRegressor: the main implementation
    • SampleRandomForestQuantileRegressor: an approximation, that is much faster than the main implementation.
    • RandomForestMaximumRegressor: mathematically equivalent to the main implementation but much faster.
  • Extra Trees Quantile Regression

    • ExtraTreesQuantileRegressor: the main implementation
    • SampleExtraTreesQuantileRegressor: an approximation, that is much faster than the main implementation.
  • Quantile K-nearest neighbors (KNeighborsQuantileRegressor)

Installation

The package can be installed with conda:

conda install --channel conda-forge sklearn-quantile

Example

An example of Random Forest Quantile Regression in action (both the main implementation and its approximation):

Usage example

Random Forest Quantile Regressor predicting the 5th, 50th and 95th percentile of the California housing dataset.

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn_quantile import RandomForestQuantileRegressor

X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.5, random_state=0)

qrf = RandomForestQuantileRegressor(q=[0.05, 0.50, 0.95])
qrf.fit(X_train, y_train)

y_pred_5, y_pred_median, y_pred_95 = qrf.predict(X_test)
qrf.score(X_test, y_test)

Important links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sklearn_quantile-0.1.1.tar.gz (24.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sklearn_quantile-0.1.1-cp313-cp313-win_amd64.whl (900.4 kB view details)

Uploaded CPython 3.13Windows x86-64

sklearn_quantile-0.1.1-cp313-cp313-win32.whl (857.7 kB view details)

Uploaded CPython 3.13Windows x86

sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_i686.whl (2.2 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.1-cp313-cp313-macosx_11_0_arm64.whl (344.2 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

sklearn_quantile-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl (371.1 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

sklearn_quantile-0.1.1-cp312-cp312-win_amd64.whl (901.8 kB view details)

Uploaded CPython 3.12Windows x86-64

sklearn_quantile-0.1.1-cp312-cp312-win32.whl (858.3 kB view details)

Uploaded CPython 3.12Windows x86

sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_i686.whl (2.2 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.1-cp312-cp312-macosx_11_0_arm64.whl (348.5 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

sklearn_quantile-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl (375.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

sklearn_quantile-0.1.1-cp311-cp311-win_amd64.whl (906.6 kB view details)

Uploaded CPython 3.11Windows x86-64

sklearn_quantile-0.1.1-cp311-cp311-win32.whl (861.7 kB view details)

Uploaded CPython 3.11Windows x86

sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_i686.whl (2.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.1-cp311-cp311-macosx_11_0_arm64.whl (349.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

sklearn_quantile-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl (376.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

sklearn_quantile-0.1.1-cp310-cp310-win_amd64.whl (906.1 kB view details)

Uploaded CPython 3.10Windows x86-64

sklearn_quantile-0.1.1-cp310-cp310-win32.whl (862.5 kB view details)

Uploaded CPython 3.10Windows x86

sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

sklearn_quantile-0.1.1-cp310-cp310-macosx_11_0_arm64.whl (349.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

sklearn_quantile-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl (375.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file sklearn_quantile-0.1.1.tar.gz.

File metadata

  • Download URL: sklearn_quantile-0.1.1.tar.gz
  • Upload date:
  • Size: 24.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for sklearn_quantile-0.1.1.tar.gz
Algorithm Hash digest
SHA256 a431837404fbcb20e54040609ed2a087c733ed8795474a7b7b402aebefc28d53
MD5 79c04517dbe5c7db90d4f7ba580dfaf6
BLAKE2b-256 aed6fcc62aa4987475438fee36c73dc6e3d9b8c3e6c814fc5c7c4402c82d40d4

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 211c2ad1efe1e2d6daabdf3f093f9e8aef9a94465e579c999ddcde9c1db09c4e
MD5 5a896160b84744d9d54f5f2d2a2d215d
BLAKE2b-256 a4db6c54dd8e05b164a18cb8a8550b2a16cc3ffaa189ba9b1f3146f4cca6f1e9

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 39c259b76003b323a8bd54faf2f2961593749846f474953a51e7722e6f370a88
MD5 40004d7c18e269854fdb834fb827adc1
BLAKE2b-256 953b2eeef90ad69c7f3535d32c08a0a0f33d19b774dd65f85f20f660dad63710

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ff72f2fb51bb2605a42b19d0d6c69ea65d1c8e2b44ba28f7a9fa7ca7cdbbcf5a
MD5 4391cf7ad93b05b3b7add5f5631a24d7
BLAKE2b-256 ef4a74d04fec8367e2c6c0d5233d90094bd8aed6be929b06b0bf965c66cf1c76

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 db73d5db65daa2aef56ec355d00dfeef72597fc0afbace192fbbcd9f5c7677c7
MD5 dd6508f791510999f25b9e3add6d7665
BLAKE2b-256 cba285bdfdef936b67a92691cf1b7d9fc216f04ef503b0f4e4ad5a4efe112e17

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1054ec0649b812c6f9bf880738e2c33ba102b699061f524390b8dde992415ba1
MD5 9cba08672c8a1a9750f9501fdd3ed3d8
BLAKE2b-256 f9c47756a46a4c752cf9fa67e94d2c6288fa4116ceb695ab089871492de38bfd

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b652b148a4e73996c8175cbb89651548892d2e82fe69e08b23ddf5738bfcd93
MD5 34046e4c7080577e9ba8ade1b40f2192
BLAKE2b-256 56234609ff837989bd07a618a028d7be009c500c84083c7ebcf66b0b4fb89539

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0c5c8215abd03982532c8baf921b65e729fc1e220653299ed19ab4741d32e55
MD5 75e09fc6328e223689edeaf7185b6ea2
BLAKE2b-256 3303b5b2b617d60773fbc23c1f80453e6887fed0835db96fb7e700c42ea5a54d

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 36f9117bc70c51239833799f123319149bca5810a1268d3d516c1bfabcf17fc1
MD5 ffeb1a86f841e7d718b0795e46006ec0
BLAKE2b-256 685d29803df9ca443b7ef70a1a727029366f190d85f211827d2addeb9bf42039

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a9d39d0b4f27d4936de698ea6e780cf913bde0ae22db3cc24337d2a29aeb7afd
MD5 dbca2857bb8bfc68f42c744a3ba31557
BLAKE2b-256 40b1ee7588df8d37c780cf2ad5da726d718ebdbceb430b95fc557ab328ea7393

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d4460669d43af614abaad5fd8a268208823648505cb5d58b2821a5320c3a320d
MD5 a00a7baa842bbb9838887696095ae9fa
BLAKE2b-256 42b4ac8548f3e80e138350d68d27033932306dcd4d22342846743840cfe31066

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9afb094c3548bf7133d8e3e3db27f64c5cdb50035d1ca29d13649d0c3db83406
MD5 9bff4e74f5af21cc81aefb66591978da
BLAKE2b-256 b2620cf1c4ffdec0cc43c34d2430e8df604f78f75a4a1aa721af29883420888d

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 14a6d31be4f4f50d3b3da2dabbfde6441ce54871dd30ac3a80f0b6b968cb5296
MD5 1e88a4d8c7de6e79cba0e179f85c77fa
BLAKE2b-256 9acec7b8c031a76fd79ba6db014428b075ec2cf228789ca3b57f6aeff404dcc8

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 158e96b40d289628885d95761c93967dcb9d29271fc3336a7ffca280f610e7a3
MD5 4ad69b9401300679810b063de6bca2c8
BLAKE2b-256 26618c54a4df05a369161f5929171321f00e350dad0cc28968edd0376f867dfd

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 91c55454c585a819a76ff0056da173778b5deeeff8d9ef7e6cedddb5dbff7744
MD5 265b317f69187c2e114cb82ccdfec9f7
BLAKE2b-256 f8daca4b46c377fbb30bba1e73d453d81e5daaeca5f6ec231ecf1590be27946b

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27e685bc6d6b5f80065a0993c0f1d37769ed937ea736f53a041af96be714e68c
MD5 f21ff0ab81e80d296e0b9042af73821d
BLAKE2b-256 a62a2aa66c1a78f907df46086d02d99e4ea748b91e8392d0e75025576ca8aa80

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5f8b709c6dd74550d74703d73d788dec600a4b4a4b17010316c8c10b0dab83d5
MD5 9e7802b4503d4287019ce045f41538da
BLAKE2b-256 c11233e39f35baf312acb5e661795c090017558c95f2af9d370ea5194fd157cf

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4e71094a20a99450f6451d83692be4461f11abeffcf20f6c0eaa9f70dbfd5080
MD5 6166ed595a60f3cbc72551830e7ee832
BLAKE2b-256 ce3b1ad2ca096531825da3b14b2d1c1edfb9d5367b67480b555eddb268010df8

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0171de636532ed40d0fc5099d856a838722de7362d0091cd4be0652848479ef2
MD5 fefd5be96d39a9449c33956422510181
BLAKE2b-256 1c87402df68e17a19a43cf3264c7744a09a02190f305b47a45a9c108585bd385

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6a5b62915757c424940af19683efc461304048fc8b1196578559cab77c4f0c0
MD5 b50a49c74ce2a7516da3c94c3e971518
BLAKE2b-256 81051c14e84ae8f6fa367c593438a0a5c896e6906685ceb1bc159b6ab5d2106e

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c8a6854fe528628d75eaa1a7ea54a594c8880a122da242ca7ecec9904e7e9276
MD5 b226bc36f30311a19ecb3c1ec4637452
BLAKE2b-256 ee0fa887552adb8274050535c8bc9f8ef3985a35f80ce6d5b1cb1b235a89d527

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18dc31fde9eec17d754911029aa9a63d19a4d70e130f7a942a236c8b3453c6b9
MD5 1e6017a9168519a8f7cd61ec783f5bd4
BLAKE2b-256 9442eab8d9daf61a592f3aec63ce49ec856aa421994f6bad8e99b4de5ad7e521

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 909b88153abeea92512cb8e091890f3da27ad0bacb481edc240e1aabb4af426f
MD5 e79f056bee03caadcfeeae661f1bc543
BLAKE2b-256 ddb63b5cf1b798f912405baf9d9b2f489be5c776ff1b5f0ff2369f47e8f21d7b

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e6a53f70ce5c2a321abe5ec16aa356aaaf67c03ea8c1e1c554f2446d2ceb8230
MD5 b2e14178cfaeda498d4e86f5b11e082d
BLAKE2b-256 9939ada58db72e8a044d2bda04a9a5d063fd0f7730e81d77f1e422ecce0836c7

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83473cd0ad434a89e8d7703dfac74b856c4aa2a2b4b7ace0739e5260201cbe23
MD5 10a73fc50154346a7990dd49a5bfd5f6
BLAKE2b-256 282cd99f9d05cb7277ca60f30c7f2dd78e3e1c311e036426a1b91fcc48218c4a

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 55f8dd7df9b2a5d14260877c08d04e6a22df0c05780091a49ab5cb7afa79ecb3
MD5 656a95319006449a4210a86a6b3d5962
BLAKE2b-256 ec21d09d5e08f107a9d8e42c11105665e12df41a0b869ac5f3fc59409b1b3874

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 7e1f3e3273872459c436256f102a7411130a1ed749e1c14748be5b4c1bb938b1
MD5 72735e94f09ee89167aa01c1543058cf
BLAKE2b-256 051bc64f9594e4158576b7cc84f682015c8c6618e008443853ef136d8036f363

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 eef88f441c0a9017f2aa3106f654d719a07c0794e0d67506a80e5e3da3c0edde
MD5 1112dbd2239bfbaf438c8ac096e16345
BLAKE2b-256 7ddc3550febecd9513a8ad9b86df57d6372721fea77edb1ecda9858e60b0ae12

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 de141d072601006a35972d2b3f6986c31ed869075f2ae15c80988b6d0678ee2b
MD5 13b12aedef0f1ca9334a55800cf39c68
BLAKE2b-256 b174355887953aec9a1a4aa445f096c1c8e6119fef3f9ef69afb3cf498182d2b

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 279fda40e28a4e32b430e7b68cec0611b1c26218df32885cab335a8ea04ac098
MD5 efd2158ebf0b0a7e50f65bcd62767316
BLAKE2b-256 ad9887a04894665446e95a6ccc3a94b975b214e172d5b88197d75a39e6e970d2

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 423cecb12256db115b4a1516a0124ba86026c85f09498ac43791f67c893f0d4f
MD5 d2907abd273f07e926ae4837c27d1720
BLAKE2b-256 a80d0723486eabd144f3e9d87495279b0787b04ff31c1f8dbdc9bf2cb6721efc

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 503a1de421acc56d963c9b44415a14e62309f4a94b87ef100e50a989704f0412
MD5 bffe9ecb688c00dcfb84d4a079d031ec
BLAKE2b-256 fce1bdc2a16b1c2f9ac785c2fbecd977948132f95f2d76196e18a73fdf2b4e82

See more details on using hashes here.

File details

Details for the file sklearn_quantile-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sklearn_quantile-0.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7109bbfca5c3400e8d2f0e23dfa9c602b4991185273bcd565bc9b8f1a8486fba
MD5 4ac2e39c0c6c1557b8b502de1daafdc4
BLAKE2b-256 298bc964f705c1e4e5417062e30761e39f681498197f14db5e8dc8622d2d10c2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page