Skip to main content

No project description provided

Project description

scale-sdk

python scale

Install

pip install skt-scale

Config set up

$ scalecli config set url http://0.0.0.0:13202
Updated config

$ scalecli login
Enter paas id: user_id
Enter paas password:
login success

Usage

sdk

source.py

# -*- coding: utf-8 -*-
# pylint disable

import tensorflow as tf


tf.logging.set_verbosity(tf.logging.INFO)


def input_fn():
    features = tf.data.Dataset.from_tensors([[1.0]]).repeat()
    labels = tf.data.Dataset.from_tensors(1.0).repeat()
    return tf.data.Dataset.zip((features, labels))


def model_fn(features, labels, mode, params):
    layer = tf.layers.Dense(1)
    logits = layer(features)
    loss = tf.losses.mean_squared_error(
        labels=labels, predictions=tf.reshape(logits, [])
    )
    if mode == tf.estimator.ModeKeys.TRAIN:
        step = tf.train.get_or_create_global_step()
        train_op = tf.train.AdamOptimizer().minimize(loss, step)
        return tf.estimator.EstimatorSpec(
            mode=mode, loss=loss, train_op=train_op
        )


def main():
    estimator = tf.estimator.Estimator(model_fn=model_fn)
    estimator.train(input_fn=input_fn, steps=1000)


main()

cpu_example.py

import os
import random
import string
from scale import Client


def main():
    client = Client()
    random_job_name = "".join(
        random.choice(string.ascii_letters + string.digits) for _ in range(10)
    )
    image_name = "scale/tensorflow:1.14-v1-py3"
    current_dir = os.path.dirname(os.path.realpath(__file__))
    source_file = os.path.join(current_dir, "source.py")
    client.create_job(
        job_name=random_job_name, image_name=image_name, source_file=source_file
    )


if __name__ == "__main__":
    main()

gpu_example.py

import os
import random
import string
from scale import Client


def main():
    client = Client(
        host="http://0.0.0.0:13202", user_id="user", token="secret_token"
    )
    random_job_name = "".join(
        random.choice(string.ascii_letters + string.digits) for _ in range(10)
    )
    image_name = "scale/tensorflow:1.14-v1-py3"
    current_dir = os.path.dirname(os.path.realpath(__file__))
    source_file = os.path.join(current_dir, "source.py")
    gpu_type = "Tesla_P100-PCIE-16GB"
    client.create_job(
        job_name=random_job_name,
        image_name=image_name,
        source_file=source_file,
        gpu_type=gpu_type,
        cpu=1,
        mem=2,
        gpu=1,
    )


if __name__ == "__main__":
    main()

result

$ python test.py
job id:  78305d8f-06bd-495b-91fc-0f429a9f0dae
wait for container to start
[SYSTEM] Train start.
[2020-03-05 07:32:05:1] WARNING: Logging before flag parsing goes to stderr.
[2020-03-05 07:32:05:2] W0305 07:32:00.048396 139884626732864 deprecation_wrapper.py:119] From app.py:7: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
[2020-03-05 07:32:05:3] 
[2020-03-05 07:32:05:4] W0305 07:32:00.048584 139884626732864 deprecation_wrapper.py:119] From app.py:7: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
[2020-03-05 07:32:05:5] 
[2020-03-05 07:32:05:6] I0305 07:32:00.048879 139884626732864 estimator.py:1790] Using default config.
[2020-03-05 07:32:05:7] W0305 07:32:00.049320 139884626732864 estimator.py:1811] Using temporary folder as model directory: /tmp/tmpoliwaf9g
[2020-03-05 07:32:05:8] I0305 07:32:00.049926 139884626732864 estimator.py:209] Using config: {'_model_dir': '/tmp/tmpoliwaf9g', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
[2020-03-05 07:32:05:9] graph_options {
[2020-03-05 07:32:05:10]   rewrite_options {
[2020-03-05 07:32:05:11]     meta_optimizer_iterations: ONE
[2020-03-05 07:32:05:12]   }
[2020-03-05 07:32:05:13] }
[2020-03-05 07:32:05:14] , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f3947dc7cc0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
[2020-03-05 07:32:05:15] W0305 07:32:00.050079 139884626732864 model_fn.py:630] Estimator's model_fn (<function model_fn at 0x7f3947e21d90>) includes params argument, but params are not passed to Estimator.
[2020-03-05 07:32:05:16] W0305 07:32:00.068118 139884626732864 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
[2020-03-05 07:32:05:17] Instructions for updating:
[2020-03-05 07:32:05:18] Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
[2020-03-05 07:32:05:19] I0305 07:32:00.129392 139884626732864 estimator.py:1145] Calling model_fn.
[2020-03-05 07:32:05:20] W0305 07:32:00.129571 139884626732864 deprecation_wrapper.py:119] From app.py:17: The name tf.layers.Dense is deprecated. Please use tf.compat.v1.layers.Dense instead.
[2020-03-05 07:32:05:21] 
[2020-03-05 07:32:05:22] W0305 07:32:00.131662 139884626732864 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
[2020-03-05 07:32:05:23] Instructions for updating:
[2020-03-05 07:32:05:24] Call initializer instance with the dtype argument instead of passing it to the constructor
[2020-03-05 07:32:05:25] W0305 07:32:00.662171 139884626732864 deprecation_wrapper.py:119] From app.py:19: The name tf.losses.mean_squared_error is deprecated. Please use tf.compat.v1.losses.mean_squared_error instead.
[2020-03-05 07:32:05:26] 
[2020-03-05 07:32:05:27] W0305 07:32:00.675267 139884626732864 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/losses/losses_impl.py:121: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
[2020-03-05 07:32:05:28] Instructions for updating:
[2020-03-05 07:32:05:29] Use tf.where in 2.0, which has the same broadcast rule as np.where
[2020-03-05 07:32:05:30] W0305 07:32:00.679626 139884626732864 deprecation_wrapper.py:119] From app.py:23: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
[2020-03-05 07:32:05:31] 
[2020-03-05 07:32:05:32] W0305 07:32:00.679796 139884626732864 deprecation_wrapper.py:119] From app.py:24: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.
[2020-03-05 07:32:05:33] 
[2020-03-05 07:32:05:34] I0305 07:32:00.886904 139884626732864 estimator.py:1147] Done calling model_fn.
[2020-03-05 07:32:05:35] I0305 07:32:00.888659 139884626732864 basic_session_run_hooks.py:541] Create CheckpointSaverHook.
[2020-03-05 07:32:05:36] I0305 07:32:01.269991 139884626732864 monitored_session.py:240] Graph was finalized.
[2020-03-05 07:32:05:37] 2020-03-05 07:32:01.270457: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
[2020-03-05 07:32:05:38] 2020-03-05 07:32:01.286304: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
[2020-03-05 07:32:05:39] 2020-03-05 07:32:01.290929: E tensorflow/stream_executor/cuda/cuda_driver.cc:318] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
[2020-03-05 07:32:05:40] 2020-03-05 07:32:01.290978: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] no NVIDIA GPU device is present: /dev/nvidia0 does not exist
[2020-03-05 07:32:05:41] 2020-03-05 07:32:01.348206: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2599925000 Hz
[2020-03-05 07:32:05:42] 2020-03-05 07:32:01.353221: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x227ec10 executing computations on platform Host. Devices:
[2020-03-05 07:32:05:43] 2020-03-05 07:32:01.353270: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
[2020-03-05 07:32:05:44] 2020-03-05 07:32:01.448839: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
[2020-03-05 07:32:05:45] I0305 07:32:01.471862 139884626732864 session_manager.py:500] Running local_init_op.
[2020-03-05 07:32:05:46] I0305 07:32:01.475904 139884626732864 session_manager.py:502] Done running local_init_op.
[2020-03-05 07:32:05:47] I0305 07:32:01.870096 139884626732864 basic_session_run_hooks.py:606] Saving checkpoints for 0 into /tmp/tmpoliwaf9g/model.ckpt.
[2020-03-05 07:32:05:48] I0305 07:32:02.093250 139884626732864 basic_session_run_hooks.py:262] loss = 0.000752323, step = 1
[2020-03-05 07:32:05:49] I0305 07:32:02.268341 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 569.372
[2020-03-05 07:32:05:50] I0305 07:32:02.269199 139884626732864 basic_session_run_hooks.py:260] loss = 2.3888447e-11, step = 101 (0.176 sec)
[2020-03-05 07:32:05:51] I0305 07:32:02.458733 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 524.98
[2020-03-05 07:32:05:52] I0305 07:32:02.459607 139884626732864 basic_session_run_hooks.py:260] loss = 2.877698e-13, step = 201 (0.190 sec)
[2020-03-05 07:32:05:53] I0305 07:32:02.648005 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 529.569
[2020-03-05 07:32:05:54] I0305 07:32:02.649275 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 301 (0.190 sec)
[2020-03-05 07:32:05:55] I0305 07:32:02.774062 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 791.023
[2020-03-05 07:32:05:56] I0305 07:32:02.774733 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 401 (0.125 sec)
[2020-03-05 07:32:05:57] I0305 07:32:02.866282 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 1082.71
[2020-03-05 07:32:05:58] I0305 07:32:02.866768 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 501 (0.092 sec)
[2020-03-05 07:32:05:59] I0305 07:32:02.965521 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 1008.81
[2020-03-05 07:32:05:60] I0305 07:32:02.966336 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 601 (0.100 sec)
[2020-03-05 07:32:05:61] I0305 07:32:03.069179 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 963.884
[2020-03-05 07:32:05:62] I0305 07:32:03.069773 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 701 (0.103 sec)
[2020-03-05 07:32:05:63] I0305 07:32:03.154792 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 1168.15
[2020-03-05 07:32:05:64] I0305 07:32:03.155704 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 801 (0.086 sec)
[2020-03-05 07:32:05:65] I0305 07:32:03.266279 139884626732864 basic_session_run_hooks.py:692] global_step/sec: 897.621
[2020-03-05 07:32:05:66] I0305 07:32:03.267081 139884626732864 basic_session_run_hooks.py:260] loss = 0.0, step = 901 (0.111 sec)
[2020-03-05 07:32:05:67] I0305 07:32:03.354782 139884626732864 basic_session_run_hooks.py:606] Saving checkpoints for 1000 into /tmp/tmpoliwaf9g/model.ckpt.
[2020-03-05 07:32:05:68] I0305 07:32:03.395870 139884626732864 estimator.py:368] Loss for final step: 0.0.
[SYSTEM] Train completed.

cli

scale create_job \
 --job_name=$RANDOM \
 --image_name=scale/tensorflow:1.14-v1-py3 \
 --source_file=./sample.py \
 --gpu_type=Tesla_P100-PCIE-16GB \
 --mem=2 \
 --gpu=1 \
 --cpu=1
job id:  43f7854d-fb58-42c3-b544-9c624a5ffdd9
wait for container to start
SYSTEM] Train start.
[2020-03-05 07:27:13:1] WARNING: Logging before flag parsing goes to stderr.
[2020-03-05 07:27:13:2] W0305 07:27:06.527273 139771468314432 deprecation_wrapper.py:119] From app.py:7: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.
[2020-03-05 07:27:13:3] 
[2020-03-05 07:27:13:4] W0305 07:27:06.527491 139771468314432 deprecation_wrapper.py:119] From app.py:7: The name tf.logging.INFO is deprecated. Please use tf.compat.v1.logging.INFO instead.
[2020-03-05 07:27:13:5] 
[2020-03-05 07:27:13:6] I0305 07:27:06.527805 139771468314432 estimator.py:1790] Using default config.
[2020-03-05 07:27:13:7] W0305 07:27:06.528320 139771468314432 estimator.py:1811] Using temporary folder as model directory: /tmp/tmpkaaysn7y
[2020-03-05 07:27:13:8] I0305 07:27:06.528981 139771468314432 estimator.py:209] Using config: {'_model_dir': '/tmp/tmpkaaysn7y', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
[2020-03-05 07:27:13:9] graph_options {
[2020-03-05 07:27:13:10]   rewrite_options {
[2020-03-05 07:27:13:11]     meta_optimizer_iterations: ONE
[2020-03-05 07:27:13:12]   }
[2020-03-05 07:27:13:13] }
[2020-03-05 07:27:13:14] , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f1f0328db00>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
[2020-03-05 07:27:13:15] W0305 07:27:06.529155 139771468314432 model_fn.py:630] Estimator's model_fn (<function model_fn at 0x7f1f032e4d90>) includes params argument, but params are not passed to Estimator.
[2020-03-05 07:27:13:16] W0305 07:27:06.558148 139771468314432 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
[2020-03-05 07:27:13:17] Instructions for updating:
[2020-03-05 07:27:13:18] Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
[2020-03-05 07:27:13:19] I0305 07:27:06.628736 139771468314432 estimator.py:1145] Calling model_fn.
[2020-03-05 07:27:13:20] W0305 07:27:06.628922 139771468314432 deprecation_wrapper.py:119] From app.py:17: The name tf.layers.Dense is deprecated. Please use tf.compat.v1.layers.Dense instead.
[2020-03-05 07:27:13:21] 
[2020-03-05 07:27:13:22] W0305 07:27:06.630848 139771468314432 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling VarianceScaling.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
[2020-03-05 07:27:13:23] Instructions for updating:
[2020-03-05 07:27:13:24] Call initializer instance with the dtype argument instead of passing it to the constructor
[2020-03-05 07:27:13:25] W0305 07:27:07.550607 139771468314432 deprecation_wrapper.py:119] From app.py:19: The name tf.losses.mean_squared_error is deprecated. Please use tf.compat.v1.losses.mean_squared_error instead.
[2020-03-05 07:27:13:26] 
[2020-03-05 07:27:13:27] W0305 07:27:07.573339 139771468314432 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/losses/losses_impl.py:121: add_dispatch_support.<locals>.wrapper (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
[2020-03-05 07:27:13:28] Instructions for updating:
[2020-03-05 07:27:13:29] Use tf.where in 2.0, which has the same broadcast rule as np.where
[2020-03-05 07:27:13:30] W0305 07:27:07.580497 139771468314432 deprecation_wrapper.py:119] From app.py:23: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
[2020-03-05 07:27:13:31] 
[2020-03-05 07:27:13:32] W0305 07:27:07.580755 139771468314432 deprecation_wrapper.py:119] From app.py:24: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.
[2020-03-05 07:27:13:33] 
[2020-03-05 07:27:13:34] I0305 07:27:07.863347 139771468314432 estimator.py:1147] Done calling model_fn.
[2020-03-05 07:27:13:35] I0305 07:27:07.865198 139771468314432 basic_session_run_hooks.py:541] Create CheckpointSaverHook.
[2020-03-05 07:27:13:36] I0305 07:27:08.189621 139771468314432 monitored_session.py:240] Graph was finalized.
[2020-03-05 07:27:13:37] 2020-03-05 07:27:08.190115: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
[2020-03-05 07:27:13:38] 2020-03-05 07:27:08.258076: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
[2020-03-05 07:27:13:39] 2020-03-05 07:27:08.554655: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x3a1f340 executing computations on platform CUDA. Devices:
[2020-03-05 07:27:13:40] 2020-03-05 07:27:08.554703: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): Tesla P100-PCIE-16GB, Compute Capability 6.0
[2020-03-05 07:27:13:41] 2020-03-05 07:27:08.559790: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2599925000 Hz
[2020-03-05 07:27:13:42] 2020-03-05 07:27:08.565466: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x50b3880 executing computations on platform Host. Devices:
[2020-03-05 07:27:13:43] 2020-03-05 07:27:08.565508: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
[2020-03-05 07:27:13:44] 2020-03-05 07:27:08.568802: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
[2020-03-05 07:27:13:45] name: Tesla P100-PCIE-16GB major: 6 minor: 0 memoryClockRate(GHz): 1.3285
[2020-03-05 07:27:13:46] pciBusID: 0000:83:00.0
[2020-03-05 07:27:13:47] 2020-03-05 07:27:08.569401: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
[2020-03-05 07:27:13:48] 2020-03-05 07:27:08.572929: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
[2020-03-05 07:27:13:49] 2020-03-05 07:27:08.575969: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
[2020-03-05 07:27:13:50] 2020-03-05 07:27:08.576603: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
[2020-03-05 07:27:13:51] 2020-03-05 07:27:08.580630: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
[2020-03-05 07:27:13:52] 2020-03-05 07:27:08.583665: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
[2020-03-05 07:27:13:53] 2020-03-05 07:27:08.591141: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
[2020-03-05 07:27:13:54] 2020-03-05 07:27:08.595661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
[2020-03-05 07:27:13:55] 2020-03-05 07:27:08.595717: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
[2020-03-05 07:27:13:56] 2020-03-05 07:27:08.598404: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
[2020-03-05 07:27:13:57] 2020-03-05 07:27:08.598433: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187]      0
[2020-03-05 07:27:13:58] 2020-03-05 07:27:08.598454: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0:   N
[2020-03-05 07:27:13:59] 2020-03-05 07:27:08.602791: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 15216 MB memory) -> physical GPU (device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:83:00.0, compute capability: 6.0)
[2020-03-05 07:27:13:60] 2020-03-05 07:27:09.446952: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
[2020-03-05 07:27:13:61] I0305 07:27:09.449524 139771468314432 session_manager.py:500] Running local_init_op.
[2020-03-05 07:27:13:62] I0305 07:27:09.453503 139771468314432 session_manager.py:502] Done running local_init_op.
[2020-03-05 07:27:13:63] I0305 07:27:09.566854 139771468314432 basic_session_run_hooks.py:606] Saving checkpoints for 0 into /tmp/tmpkaaysn7y/model.ckpt.
[2020-03-05 07:27:13:64] 2020-03-05 07:27:09.657372: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
[2020-03-05 07:27:13:65] I0305 07:27:09.957408 139771468314432 basic_session_run_hooks.py:262] loss = 3.136012, step = 0
[2020-03-05 07:27:13:66] I0305 07:27:10.459863 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 198.666
[2020-03-05 07:27:13:67] I0305 07:27:10.461008 139771468314432 basic_session_run_hooks.py:260] loss = 2.4800994, step = 100 (0.504 sec)
[2020-03-05 07:27:13:68] I0305 07:27:10.877429 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 239.453
[2020-03-05 07:27:13:69] I0305 07:27:10.878589 139771468314432 basic_session_run_hooks.py:260] loss = 1.9325358, step = 200 (0.418 sec)
[2020-03-05 07:27:13:70] I0305 07:27:11.364231 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 205.424
[2020-03-05 07:27:13:71] I0305 07:27:11.365450 139771468314432 basic_session_run_hooks.py:260] loss = 1.4822296, step = 300 (0.487 sec)
[2020-03-05 07:27:13:72] I0305 07:27:11.856773 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 203.032
[2020-03-05 07:27:13:73] I0305 07:27:11.858273 139771468314432 basic_session_run_hooks.py:260] loss = 1.1173365, step = 400 (0.493 sec)
[2020-03-05 07:27:13:74] I0305 07:27:12.346587 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 204.159
[2020-03-05 07:27:13:75] I0305 07:27:12.347812 139771468314432 basic_session_run_hooks.py:260] loss = 0.82648915, step = 500 (0.490 sec)
[2020-03-05 07:27:13:76] I0305 07:27:12.777956 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 231.805
[2020-03-05 07:27:13:77] I0305 07:27:12.779240 139771468314432 basic_session_run_hooks.py:260] loss = 0.59887236, step = 600 (0.431 sec)
[2020-03-05 07:27:13:78] I0305 07:27:13.067498 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 345.287
[2020-03-05 07:27:13:79] I0305 07:27:13.068227 139771468314432 basic_session_run_hooks.py:260] loss = 0.42432293, step = 700 (0.289 sec)
[2020-03-05 07:27:13:80] I0305 07:27:13.468511 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 249.398
[2020-03-05 07:27:13:81] I0305 07:27:13.469309 139771468314432 basic_session_run_hooks.py:260] loss = 0.29343566, step = 800 (0.401 sec)
[2020-03-05 07:27:13:82] I0305 07:27:13.955026 139771468314432 basic_session_run_hooks.py:692] global_step/sec: 205.564
[2020-03-05 07:27:13:83] I0305 07:27:13.956063 139771468314432 basic_session_run_hooks.py:260] loss = 0.19767413, step = 900 (0.487 sec)
[2020-03-05 07:27:14:84] I0305 07:27:14.172374 139771468314432 basic_session_run_hooks.py:606] Saving checkpoints for 1000 into /tmp/tmpkaaysn7y/model.ckpt.
[2020-03-05 07:27:14:85] I0305 07:27:14.248917 139771468314432 estimator.py:368] Loss for final step: 0.13003506.
[SYSTEM] Train completed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for skt-scale, version 1.0.0
Filename, size File type Python version Upload date Hashes
Filename, size skt_scale-1.0.0-py3-none-any.whl (10.2 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size skt-scale-1.0.0.tar.gz (12.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page