Skip to main content
Join the official Python Developers Survey 2018 and win valuable prizes: Start the survey!

Python wrapper for SLEUTH urban growth model.

Project description

This library is an object-oriented wrapper for the SLEUTH urban growth model.

It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.

Installation

You may install this library and helper scripts using pip.

$ pip install sleuth_automation

Application Programming Interface

import sleuth_automation as sa

# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/path/to/sleuth',
             use_mpi=True, mpi_cores=32)


# a directory containing input layers is given to a location instance
l = sa.Location('MyLocation',
                '/path/to/MyLocation')

l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()

l.sleuth_predict(2017, 2050)

Command Line Interface

A single run may be achieved using the included sleuth_run.py script.

$ sleuth_run.py --sleuth_path /path/to/sleuth/ \
                --location_dir /path/to/my_location/ \
                --location_name my_location \
                --mpi_cores 40 \
                --predict_start 2017 \
                --predict_end 2050

This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.

If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.

$ create_sleuth_condor_batch.py --sleuth_path /path/to/sleuth \
                                --locations_dir /path/to/locations_group \
                                --mpi_cores 32 \
                                --predict_start 2017 --predict_end 2050

This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.

Documentation

https://readthedocs.org/projects/sleuth-automation/badge/?version=latest

Full documentation at http://sleuth-automation.readthedocs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
sleuth_automation-1.0.2.tar.gz (8.7 kB) Copy SHA256 hash SHA256 Source None Oct 5, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page