Skip to main content

Python wrapper for SLEUTH urban growth model.

Project description

This library is an object-oriented wrapper for the SLEUTH urban growth model.

It will automatically create scenario files from directories containing data layers and it can run simulations through MPI and HT-Condor.

Installation

You may install this library and helper scripts using pip.

$ pip install sleuth_automation

Application Programming Interface

import sleuth_automation as sa

# the library must be configured at least with the path to SLEUTH
sa.configure(sleuth_path='/opt/sleuth',
             use_mpi=True, mpi_cores=32)


# a directory containing input layers is given to a location instance
l = sa.Location('my_location',
                '/path/to/my_location')

l.calibrate_coarse()
l.calibrate_fine()
l.calibrate_final()

l.sleuth_predict(end=2050)

Command Line Interface

A single run may be achieved using the included sleuth_run.py script.

$ sleuth_run.py --sleuth_path /opt/sleuth/ \
                --location_dir /path/to/location/ \
                --location_name my_location \
                --mpi_cores 40 \
                --montecarlo_iterations 50 \
                --predict_end 2060

This will create scenario files for coarse, fine and final stages of calibration, extracting parameters from the control_stats.log files, and run predict.

If one wants to predict for several locations, one may group them in a directory and run them as a batch. Using the create_sleuth_condor_batch.py one may create a batch run for the HT-Condor queue management system.

$ create_sleuth_condor_batch.py --sleuth_path /opt/sleuth/ \
                                --region_dir /path/to/locations_group/ \
                                --mpi_cores 32 \
                                --predict_end 2060

This will create a submit.condor file in the locations directory, setup with the appropiate sleuth_run.py commands.

Documentation

https://readthedocs.org/projects/sleuth-automation/badge/?version=latest

Full documentation at http://sleuth-automation.readthedocs.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sleuth_automation-3.0.1.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

sleuth_automation-3.0.1-py3-none-any.whl (26.0 kB view details)

Uploaded Python 3

File details

Details for the file sleuth_automation-3.0.1.tar.gz.

File metadata

  • Download URL: sleuth_automation-3.0.1.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for sleuth_automation-3.0.1.tar.gz
Algorithm Hash digest
SHA256 f5ce50d0ebb43050d47ce4fc7f0dec45162899bd412381fcaab857331f5996cf
MD5 e2755c7b32c477d93c35f125dcea2b64
BLAKE2b-256 3195e355fe8978bde48f8ce4a4edb368a7ccdaae7bc11956fb8e7c19b5cac0aa

See more details on using hashes here.

File details

Details for the file sleuth_automation-3.0.1-py3-none-any.whl.

File metadata

  • Download URL: sleuth_automation-3.0.1-py3-none-any.whl
  • Upload date:
  • Size: 26.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for sleuth_automation-3.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 125f55b2caee301433abac0f575b0de1d603732213c335d86f9a1eb0e75c1108
MD5 e8611dc72efcaddd8020b7911405d2d6
BLAKE2b-256 6c5d7f671b15a62ef7b24dbddc089dc562f12b06c0cb951f26bc76254a219a84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page