Skip to main content

A simple Python wrapper for SNAPHU

Project description

snaphu-py

CI codecov Conda Version PyPI - Version OS

A simple Python wrapper for the Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping (SNAPHU)

Installation

Install with conda

You can install snaphu-py with conda using

$ conda install -c conda-forge snaphu

Install with pip

You can install snaphu-py with pip using

$ pip install snaphu

Install from source

To install snaphu-py from source, you will need:

  • Python 3.9 or newer + pip
  • A C compiler

The latest source code can be installed using

$ pip install git+https://github.com/isce-framework/snaphu-py.git

Alternatively, clone the repository (be sure to use the --recursive flag to fetch the Git submodules) and install the local copy using

$ git clone --recursive https://github.com/isce-framework/snaphu-py.git
$ cd snaphu-py
$ pip install .

[!NOTE] Editable installs are experimentally supported, with some caveats and configuration. See here for details.

Usage

Basic usage

The main interface is the snaphu.unwrap function, which takes input interferogram and coherence arrays and returns the unwrapped phase and connected component labels.

The inputs may be NumPy arrays or any other type of object that supports a similar interface (h5py Datasets, Zarr Arrays, etc).

The following example illustrates basic usage:

import numpy as np
import snaphu

# Simulate a 512x512 interferogram containing a simple diagonal phase ramp with multiple
# fringes.
y, x = np.ogrid[-3:3:512j, -3:3:512j]
igram = np.exp(1j * np.pi * (x + y))

# Sample coherence for an interferogram with no noise.
corr = np.ones(igram.shape, dtype=np.float32)

# Unwrap using the 'SMOOTH' cost mode and 'MCF' initialization method.
unw, conncomp = snaphu.unwrap(igram, corr, nlooks=1.0, cost="smooth", init="mcf")

The wrapped and unwrapped phase are shown below.

Working with geospatial raster data

Optional support for working with geospatial raster data is provided via the snaphu.io.Raster class, which implements a NumPy-like interface for accessing raster data in GDAL-compatible formats.

This functionality requires the rasterio package.

import snaphu

# Open the input interferogram and coherence rasters as well as a water mask.
igram = snaphu.io.Raster("igram.tif")
corr = snaphu.io.Raster("corr.tif")
mask = snaphu.io.Raster("mask.tif")

# Create output rasters to store the unwrapped phase & connected component labels with
# the same shape, driver, CRS/geotransform, etc as the input interferogram raster.
unw = snaphu.io.Raster.create("unw.tif", like=igram, dtype="f4")
conncomp = snaphu.io.Raster.create("conncomp.tif", like=igram, dtype="u4")

# Unwrap and store the results in the `unw` and `conncomp` rasters.
snaphu.unwrap(igram, corr, nlooks=50.0, mask=mask, unw=unw, conncomp=conncomp)

The wrapped[^1] and unwrapped phase for an example case are shown below.

snaphu.io.Raster implements Python's context manager protocol, so the above snippet could also be written as:

import snaphu

# Open the input rasters and create output rasters as context managers. The data will be
# flushed and the files closed upon exiting the 'with' block. (Note that this syntax
# requires Python 3.10 or newer -- see https://github.com/python/cpython/issues/56991.)
with (
    snaphu.io.Raster("igram.tif") as igram,
    snaphu.io.Raster("corr.tif") as corr,
    snaphu.io.Raster("mask.tif") as mask,
    snaphu.io.Raster.create("unw.tif", like=igram, dtype="f4") as unw,
    snaphu.io.Raster.create("conncomp.tif", like=igram, dtype="u4") as conncomp,
):
    # Unwrap and store the results in the `unw` and `conncomp` rasters.
    snaphu.unwrap(igram, corr, nlooks=50.0, mask=mask, unw=unw, conncomp=conncomp)

This has the advantage of ensuring that the raster datasets are flushed and closed upon exiting the with block.

Tiling and parallelism

The interferogram may be partitioned into multiple (possibly overlapping) regularly-sized rectangular blocks, each of which is unwrapped independently before being reassembled. This tiling strategy can significantly improve unwrapping runtime and reduce peak memory utilization, but may also introduce phase discontinuities between tiles. In order to mitigate such tiling artifacts, choosing a substantial overlap between tiles is recommended.

Multiple tiles may be unwrapped simultaneously in parallel processes.

The following example demonstrates tiled unwrapping using multiple processes:

import numpy as np
import snaphu

# Simulate a 2048x2048 interferogram containing a simple diagonal phase ramp with many
# fringes.
y, x = np.ogrid[-12:12:2048j, -12:12:2048j]
igram = np.exp(1j * np.pi * (x + y))

# Sample coherence for an interferogram with no noise.
corr = np.ones(igram.shape, dtype=np.float32)

# Unwrap using a 4x4 grid of tiles in parallel using 8 processes.
unw, conncomp = snaphu.unwrap(
    igram, corr, nlooks=1.0, ntiles=(4, 4), tile_overlap=256, nproc=8
)

The wrapped and unwrapped phase are shown below.

FAQ

Why isn't [some configuration parameter] exposed?

The full set of SNAPHU parameters includes >100 configurable options. This project takes a pragmatic (and somewhat opinionated) approach to managing this complexity. Only the most commonly manipulated parameters are exposed.

If there's an option that's not currently supported that you'd like to see added to the interface, feel free to open an issue requesting the addition.

What version of SNAPHU is used?

Our goal is to support the latest available SNAPHU release. The SNAPHU version used by the library can be obtained using

>>> import snaphu
>>> print(snaphu.get_snaphu_version())

What platforms are supported?

Unix-like systems (e.g. Linux, macOS) are supported. Installation on Windows is not currently supported.

Copyright

Copyright (c) 2023 California Institute of Technology ("Caltech"). U.S. Government sponsorship acknowledged.

All rights reserved.

License

This software is licensed under your choice of BSD-3-Clause or Apache-2.0 licenses. The exact terms of each license can be found in the accompanying LICENSE-BSD-3-Clause and LICENSE-Apache-2.0 files, respectively.

SPDX-License-Identifier: BSD-3-Clause OR Apache-2.0

[!NOTE] The SNAPHU source code (which is included as a Git submodule) is subject to different license terms, the details of which can be found here. In particular, note that parts of the SNAPHU codebase are subject to terms that prohibit commercial use.

[^1]: InSAR product processed by ASF DAAC HyP3 2023 using GAMMA software. Contains modified Copernicus Sentinel data 2023, processed by ESA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

snaphu-0.4.1.tar.gz (551.5 kB view details)

Uploaded Source

Built Distributions

snaphu-0.4.1-pp310-pypy310_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded PyPymanylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

snaphu-0.4.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (151.8 kB view details)

Uploaded PyPymacOS 10.15+ x86-64

snaphu-0.4.1-pp39-pypy39_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded PyPymanylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (143.4 kB view details)

Uploaded PyPymacOS 11.0+ ARM64

snaphu-0.4.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (151.8 kB view details)

Uploaded PyPymacOS 10.15+ x86-64

snaphu-0.4.1-cp313-cp313-musllinux_1_2_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

snaphu-0.4.1-cp313-cp313-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-cp313-cp313-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

snaphu-0.4.1-cp313-cp313-macosx_10_13_x86_64.whl (151.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

snaphu-0.4.1-cp312-cp312-musllinux_1_2_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

snaphu-0.4.1-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-cp312-cp312-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

snaphu-0.4.1-cp312-cp312-macosx_10_13_x86_64.whl (151.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

snaphu-0.4.1-cp311-cp311-musllinux_1_2_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

snaphu-0.4.1-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-cp311-cp311-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

snaphu-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl (152.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

snaphu-0.4.1-cp310-cp310-musllinux_1_2_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

snaphu-0.4.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-cp310-cp310-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

snaphu-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl (152.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

snaphu-0.4.1-cp39-cp39-musllinux_1_2_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

snaphu-0.4.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64manylinux: glibc 2.17+ x86-64

snaphu-0.4.1-cp39-cp39-macosx_11_0_arm64.whl (143.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

snaphu-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl (152.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file snaphu-0.4.1.tar.gz.

File metadata

  • Download URL: snaphu-0.4.1.tar.gz
  • Upload date:
  • Size: 551.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for snaphu-0.4.1.tar.gz
Algorithm Hash digest
SHA256 41a7f48e1b8809fa19e9fa5c7e90bfbd1502b1d5b437d2a302fc4938e64095b6
MD5 1986fd1e4d16d29996524d56de33303d
BLAKE2b-256 3bb950d7a530c3dc97f61d30fefb31aa50f4710954de12e0cebcae8c9fc8d301

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp310-pypy310_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp310-pypy310_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d70b3fd731dae7241c4c092cec138fed71021b06f72d6c487f3d5e266e2650c
MD5 fe7fb20f42443308ff54fcb171d7dedf
BLAKE2b-256 2b8d67597d0c7fd1022b77425b1b3bc7e5e3ca8bfb69cf3530e55a78cb87c159

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 097c0eb53b3cda3f01bcce5a88a55ed86fa15c83735a070d1b3552ba8378cf91
MD5 b9264d10eb5de3659cf98b063a28626c
BLAKE2b-256 64e9927d2a1f4209a033360135e0e22c24ab472133137999d2fc5abf3d8e4f23

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fac136ed69b2f89899190bb58710535c59914a1150366cc86d3133f225bde545
MD5 f905d2931afc5585d2c483d9a978b1db
BLAKE2b-256 00616c5459f2a511b3a5c12e4564b52f321da45d49db68041f1438aae99ad037

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp39-pypy39_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp39-pypy39_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c73cd7b6ffae33c76e862d005ab8de37501e0cc00ab83608058dcf73205174be
MD5 ca507271b5ca549b9e7a7c8973cdb320
BLAKE2b-256 6bf82cbc0f35c25d293f097cbd310e0d9f1223027d23d120eda33b931f3798be

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c126194502f1b08e1a2a7fe41904c2d6656c0f0594fee227f299db8ffab30ee
MD5 1a7fa9f80e0658405f2fda11f33c5c1b
BLAKE2b-256 a04a4bee10449e5a1cef5dd96de03472abacf1ac27d324cb3e077811e2beb952

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 48aa168702a3c4bbc77115d201766c0f3cb902ba8d12e5939714105645f61ff0
MD5 3a493f2cd14e1cb78cc37c7b6d614c40
BLAKE2b-256 45eb5a2daa6e7ed782a013d2b41f3977a52ab543657aefe17865e2bb7c538ee6

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0cf5e8252dd2ac52bd1003f51e5c0de3bb5e9323248aad1b4d8001fca883ff12
MD5 6a99704a1edc4a9af1e62a3526774c3e
BLAKE2b-256 d907daaab9a5588fcf53b428ea0ff141aaa2f02234cb14de218ced8812a88e44

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp313-cp313-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp313-cp313-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b1a2037dfab887d7837c10d125530b0fc67563e68240051c5e90077db4b92cb
MD5 8bac057ba044805b698861833914b792
BLAKE2b-256 27794198fd39f660d5fc06ef999d78e4d3976ddf348d14c4d0aafabdeaa2de46

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d81600c71d2fa533ef22b9fb9ca2271ec1cf5b19da4ee05ddd3a181e60bfd09
MD5 b682fe4384ff40f2caff0d40a127a544
BLAKE2b-256 d05c7eca15911a45b63e60612e2047147149dfa5c5bad259c5c94dc6d55b38df

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3e4f039807fa2cab1c372e3d5bf6cb72739fe8bdb78cab43234c4add09a3a896
MD5 92654ce5c83ccdd87e5ac8a8bb7925d8
BLAKE2b-256 f2d3a9d496a9e5a5e2e0388fc49e2710f0103f53404c7ac17628e38728c4ae6c

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f7c9a9410560795da41048a586ecef7e1efa351027577a77e52baa6df77cd5f4
MD5 db5d728eb56e14e9d3390bf380e70abf
BLAKE2b-256 6d25732c1b93de2e130af4afc9817022a168a1e96410d7d67a9ec4e69c14713d

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp312-cp312-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d38d0b016718b0945cc1a6d3240ca0257d415b416e62a06964140ad0cd8c261d
MD5 23536f275cb6666c667587f96d98ea17
BLAKE2b-256 56f3b594fe851ad520a07127a9680bbf9732c74f8d4e6b6dc5a2cdd196bf5974

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ed89e57afce7ef3df748553e283b0ba606a14eb844147ce4e9a917fd87158e8
MD5 f6c93e43d529b4183122ccfc285fb5e3
BLAKE2b-256 ce634ac4488f3999d8f0d5fcfce5ed8cbe9abc0d64daffd59c5411e15a7fdb40

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 72c00be8d876cebf66b5874c35076f48ba4484dd94d176f21527763b03549a3a
MD5 686330f9d70b70f993f958dbf9fb9da3
BLAKE2b-256 d3a029a539efd9ae67a8c5d1c20d849fe9f468e0e0184475d501e5a1298dd6cb

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 34cf7111865e1a5d2451ff3d97421473edd8c4ffd99d692e02a6cc23f5629cf5
MD5 5408c6b0fe5f8bc56b6e05a8a93a8ca9
BLAKE2b-256 68670295a8cfb1d88a5863dd1ff5e5a5514cd40513d6d604cbf9fd64977215ba

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp311-cp311-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7a55e7be04891931d4020fe0055920d4944fb6c611f4566bfbe05c113c5d79e
MD5 32abc88d9fa0d2340b98dac9a0942ab2
BLAKE2b-256 2a448c6be346b217c805202b967b96ca04caa586c53f9427c948b7797ef15a36

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5888b15f68f55109b36c2784e6ac06143f3bb02a0eee2cb0171061ca116e7967
MD5 1dd31cc83faf265f0d80a83aa655a70a
BLAKE2b-256 aa7e2a44545d63bfb87d42ec28fb748b75ce1c4dc5de22be7b72294c035c9079

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3d069a7815834f0d72c6fdeac72c69a76069e14c03bca80fd5e78f0ea40bdb7
MD5 6119149bc6fa1b3d807c878c6156b56c
BLAKE2b-256 8c198279587822a695b339afd985357f835858f6c20b3f05cc81f232b86895e5

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 17702735ccdad2305b13428d7d6df0664ab32b9aaa8e8f7d28f158029767bacb
MD5 16adcacdabbb34fc5351ee068df7a108
BLAKE2b-256 d271e884a8cb4638f866b1931d30493e370edbf42dd097a9d730152bba24ea1b

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2bb5cf03d0cefead7a2287a4e51b10242d6778024883128eb3f63062811beb7
MD5 b7a60180e74283845a28822a61b3aa01
BLAKE2b-256 5d8360f442b7675cd9148a97e1474dc4049b13cc3fc69fb096fd50f0098c6ee7

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4d05abc74e4ce8ce89b2bbcbc8cf22504c069ee0925ee8219a8c1c18e901615
MD5 aa765531fb6552d94942ae21d9eec069
BLAKE2b-256 edcfb7484df6eed8677423946681f1254dcdd74b40e72102274bf8afd155a24b

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c9d4935461a34f9138bb45bb742e3b0aff13349b70adbbf4fc40cb894922401
MD5 9ee76c24e896585af09a43b47f48cac3
BLAKE2b-256 e4fe4661a52e319fbda1f204528aaad284c414b92726e6e8ebb38ef2d5eb3df9

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b0d3f396347bbcae4ea21434b22579b6cb60b200248b09239fcc7692683d36e1
MD5 97b3b44d329433dc3e36690119666011
BLAKE2b-256 19dd47c43d3ee2bd63310ef0bb33df0a0b77628551ee38e4fb94b8f3be72596c

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c785b1f9358b01bfa821a900020e265c4cc7fb6aef6d6362c4de3a50f74429fc
MD5 ac52e3143b3d2cffc2deb2350d8c3a54
BLAKE2b-256 945e55737102d781dc57e6e06f218546b65a20cdb322bd098eefd30c7b4d554f

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82376b85a59b255728fc774a4f8b08a78382ac4142473db698edd08f4e3df984
MD5 5938664d3b070754812daa3f638be799
BLAKE2b-256 e41120b1f04723d65cf0e6b782a57df16ad355f5f9f92d49e283791097915dbf

See more details on using hashes here.

File details

Details for the file snaphu-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for snaphu-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d4390820cce19ae5f71394c66ea08fbb9de34e046e251f06509fcd9654ac90e0
MD5 55e22f7fae6d29d3ee9580caabb3da4e
BLAKE2b-256 ec766c8e7714ed75176c242d3bd672b83c53ea97b00447b9677ffff464d6911a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page