PyTorch implementation of 'From Sparse to Soft Mixtures of Experts'
Project description
Soft Mixture of Experts
PyTorch implementation of Soft Mixture of Experts (Soft-MoE) from "From Sparse to Soft Mixtures of Experts".
This implementation extends the timm library's VisionTransformer class to support Soft-MoE MLP layers.
Installation
pip install soft-moe
Or install the entire repo with:
git clone https://github.com/bwconrad/soft-moe
cd soft-moe/
pip install -r requirements.txt
Usage
Initializing a Soft Mixture of Experts Vision Transformer
import torch
from soft_moe import SoftMoEVisionTransformer
net = SoftMoEVisionTransformer(
num_experts=128,
slots_per_expert=1,
moe_layer_index=6,
img_size=224,
patch_size=32,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
)
img = torch.randn(1, 3, 224, 224)
preds = net(img)
Functions are also available to initialize default network configurations:
from soft_moe import (soft_moe_vit_base, soft_moe_vit_huge,
soft_moe_vit_large, soft_moe_vit_small,
soft_moe_vit_tiny)
net = soft_moe_vit_tiny()
net = soft_moe_vit_small()
net = soft_moe_vit_base()
net = soft_moe_vit_large()
net = soft_moe_vit_huge()
net = soft_moe_vit_tiny(num_experts=64, slots_per_expert=2, img_size=128)
Setting the Mixture of Expert Layers
The moe_layer_index argument sets at which layer indices to use MoE MLP layers instead of regular MLP layers.
When an int is given, all layers starting from that depth index will be MoE layers.
net = SoftMoEVisionTransformer(
moe_layer_index=6, # Blocks 6-12
depth=12,
)
When a list is given, all specified layers will be MoE layers.
net = SoftMoEVisionTransformer(
moe_layer_index=[0, 2, 4], # Blocks 0, 2 and 4
depth=12,
)
- Note:
moe_layer_indexuses 0-index convention.
Creating a Soft Mixture of Experts Layer
The SoftMoELayerWrapper class can be used to make any network layer, that takes a tensor of shape [batch, length, dim], into a Soft Mixture of Experts layer.
import torch
import torch.nn as nn
from soft_moe import SoftMoELayerWrapper
x = torch.rand(1, 16, 128)
layer = SoftMoELayerWrapper(
dim=128,
slots_per_expert=2,
num_experts=32,
layer=nn.Linear,
# nn.Linear arguments
in_features=128,
out_features=32,
)
y = layer(x)
layer = SoftMoELayerWrapper(
dim=128,
slots_per_expert=1,
num_experts=16,
layer=nn.TransformerEncoderLayer,
# nn.TransformerEncoderLayer arguments
d_model=128,
nhead=8,
)
y = layer(x)
- Note: If the name of a layer argument overlaps with one of other arguments (e.g.
dim) you can pass a partial function tolayer.- e.g.
layer=partial(MyCustomLayer, dim=128)
- e.g.
Citation
@article{puigcerver2023sparse,
title={From Sparse to Soft Mixtures of Experts},
author={Puigcerver, Joan and Riquelme, Carlos and Mustafa, Basil and Houlsby, Neil},
journal={arXiv preprint arXiv:2308.00951},
year={2023}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file soft_moe-0.0.1.tar.gz.
File metadata
- Download URL: soft_moe-0.0.1.tar.gz
- Upload date:
- Size: 13.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6d2aaace545cf301d1c596f5bad2e296ce9ae7b8d76fb373d20124e5de9a286f
|
|
| MD5 |
eff480acfebe86a4cf84fdcbc03945c4
|
|
| BLAKE2b-256 |
24802a0615570c6fa8020d92039ed0bc3a702db275c15c57d366d28fea264c59
|
File details
Details for the file soft_moe-0.0.1-py3-none-any.whl.
File metadata
- Download URL: soft_moe-0.0.1-py3-none-any.whl
- Upload date:
- Size: 14.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
573f82e0e883d0a3bdcb05592a64c7cf15a959fcd62afa1b79dda0359945945f
|
|
| MD5 |
e997bb1628d062cca6609d4a00df8f74
|
|
| BLAKE2b-256 |
ca01edd5b1efc5f08c32ad1c97802e4df5abdd57339e474ed0cad71b9d9571cd
|