Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

UNKNOWN

Project description

========================
Sonnet J(SON + Net)workX
========================

Sonnet wraps a NetworkX graph and produces detailed JSON output for use with JavaScript to produce detailed graph visualizations in the browser.

Getting Started
===============

Install Sonnet::

pip install sonnet

Build a NetworkX graph::

import networkx as nx

g = nx.gnp_random_graph(20, 0.5)

Wrap it with Sonnet::

import sonnet as sn

s = sn.Sonnet(g, name='An Awesome Graph')

Build stats directly into node directory using modified NetworkX algorithms. Currently available: degree, degree_centrality, in_degree_centrality, out_degree_centrality, closeness_centrality, betweenness_centrality, eigenvector_centrality::

s.betweenness_centrality()

Find communities and assign nodes to group based on community::

s.find_communities()

Rank node size by nodes by attribute::

s.rank_nodes(rank_by='betweenness_centrality')

Now we have a nodes with lots of relevant data::

Produce JSON data (example data reduced for readability)::

s.jsonify()

'{
"directed": false,
"name": "An Awesome Graph",
"links": [
{
"source": 4,
"target": 8
},
{
"source": 5,
"target": 7
},
{
"source": 6,
"target": 8
},
],
"multigraph": false,
"graph": [
[
"name",
"gnp_random_graph(10,0.5)"
]
],
"nodes": [
{
"betweenness_centrality_ranking": 2.7258064516129035,
"community": 2,
"id": 0,
"betweenness_centrality": 0.04953703703703703
},
{
"betweenness_centrality_ranking": 1,
"community": 1,
"id": 1,
"betweenness_centrality": 0.0
},
{
"betweenness_centrality_ranking": 4.580645161290322,
"community": 1,
"id": 2,
"betweenness_centrality": 0.10277777777777775
},
{
"betweenness_centrality_ranking": 6.0,
"community": 2,
"id": 3,
"betweenness_centrality": 0.1435185185185185
},
]
}'


D3Graph
=======

D3Graph is designed to produce JSON output for D3.js graphs. It works just like Sonnet, but it has extra attributes set at during init.

Compare::

s = sn.Sonnet(g)

vars(s)

{'color_by': 'community',
'graph': <networkx.classes.graph.Graph at 0x1726210>,
'max_node_size': 6,
'min_node_size': 1,
'name': None,
'rank_by': 'degree_centrality'}

d = ns.D3Graph()

vars(d)

{'charge': -150,
'color_by': 'community',
'graph': <networkx.classes.graph.Graph at 0x1726210>,
'gravity': 0.06,
'height': 800,
'link_distance': 40,
'max_node_size': 6,
'min_node_size': 1,
'name': None,
'rank_by': 'degree_centrality',
'width': 1280}

Project details


Release history Release notifications

This version
History Node

0.1.6

History Node

0.1.5

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
sonnet-0.1.6.tar.gz (11.0 kB) Copy SHA256 hash SHA256 Source None Oct 16, 2013

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page