Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

UNKNOWN

Project Description
========================
Sonnet J(SON + Net)workX
========================

Sonnet wraps a NetworkX graph and produces detailed JSON output for use with JavaScript to produce detailed graph visualizations in the browser.

Getting Started
===============

Install Sonnet::

pip install sonnet

Build a NetworkX graph::

import networkx as nx

g = nx.gnp_random_graph(20, 0.5)

Wrap it with Sonnet::

import sonnet as sn

s = sn.Sonnet(g, name='An Awesome Graph')

Build stats directly into node directory using modified NetworkX algorithms. Currently available: degree, degree_centrality, in_degree_centrality, out_degree_centrality, closeness_centrality, betweenness_centrality, eigenvector_centrality::

s.betweenness_centrality()

Find communities and assign nodes to group based on community::

s.find_communities()

Rank node size by nodes by attribute::

s.rank_nodes(rank_by='betweenness_centrality')

Now we have a nodes with lots of relevant data::

Produce JSON data (example data reduced for readability)::

s.jsonify()

'{
"directed": false,
"name": "An Awesome Graph",
"links": [
{
"source": 4,
"target": 8
},
{
"source": 5,
"target": 7
},
{
"source": 6,
"target": 8
},
],
"multigraph": false,
"graph": [
[
"name",
"gnp_random_graph(10,0.5)"
]
],
"nodes": [
{
"betweenness_centrality_ranking": 2.7258064516129035,
"community": 2,
"id": 0,
"betweenness_centrality": 0.04953703703703703
},
{
"betweenness_centrality_ranking": 1,
"community": 1,
"id": 1,
"betweenness_centrality": 0.0
},
{
"betweenness_centrality_ranking": 4.580645161290322,
"community": 1,
"id": 2,
"betweenness_centrality": 0.10277777777777775
},
{
"betweenness_centrality_ranking": 6.0,
"community": 2,
"id": 3,
"betweenness_centrality": 0.1435185185185185
},
]
}'


D3Graph
=======

D3Graph is designed to produce JSON output for D3.js graphs. It works just like Sonnet, but it has extra attributes set at during init.

Compare::

s = sn.Sonnet(g)

vars(s)

{'color_by': 'community',
'graph': <networkx.classes.graph.Graph at 0x1726210>,
'max_node_size': 6,
'min_node_size': 1,
'name': None,
'rank_by': 'degree_centrality'}

d = ns.D3Graph()

vars(d)

{'charge': -150,
'color_by': 'community',
'graph': <networkx.classes.graph.Graph at 0x1726210>,
'gravity': 0.06,
'height': 800,
'link_distance': 40,
'max_node_size': 6,
'min_node_size': 1,
'name': None,
'rank_by': 'degree_centrality',
'width': 1280}
Release History

Release History

This version
History Node

0.1.6

History Node

0.1.5

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
sonnet-0.1.6.tar.gz (11.0 kB) Copy SHA256 Checksum SHA256 Source Oct 16, 2013

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting