Skip to main content

Spatial phenotype analysis of crisp screens (SpaCr)

Project description

[![PyPI version](https://badge.fury.io/py/spacr.svg)](https://badge.fury.io/py/spacr) [![Python version](https://img.shields.io/pypi/pyversions/spacr)](https://pypistats.org/packages/spacr) [![Licence: GPL v3](https://img.shields.io/github/license/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/blob/master/LICENSE) [![repo size](https://img.shields.io/github/repo-size/EinarOlafsson/spacr)](https://github.com/EinarOlafsson/spacr/)

# SpaCr <table> <tr> <td>

Spatial phenotype analysis of crisp screens (SpaCr). A collection of functions for generating cellpose masks -> single object images and measurements -> annotation and classification of single object images. Spacr uses batch normalization to facilitate accurate segmentation of objects with low foreground representation.

</td> <td>

<img src=”spacr/logo_spacr.png” alt=”SPACR Logo” title=”SPACR Logo” width=”600”/>

</td> </tr> </table>

## Features

  • Generate Masks: Generate cellpose masks for cells, nuclei and pathogen images.

  • Object Measurements: Measurements for each object including scikit-image-regionprops, intensity quantiles, shannon-entropy, pearsons and manders correlation, homogenicity and radial distribution. Measurements are saved to a sql database in object level tables.

  • Crop Images: Objects (e.g. cells) can be saved as PNGs from the object area or bounding box area of each object. Object paths are saved in an sql database that can be annotated and used to train CNNs/Transformer models for classefication tasks.

  • Train CNNs or Transformers: Train Torch Convolutional Neural Networks (CNNs) or Transformers to classify single object images. Train Torch models with IRM/ERM, checkpointing,

  • Manual Annotation: Supports manual annotation of single cell images and segmentation to refine training datasets for training CNNs/Transformers or cellpose, respectively.

  • Finetune Cellpose Models: Adjust pre-existing Cellpose models to your specific dataset for improved performance.

  • Timelapse Data Support: Includes support for analyzing timelapse data.

  • Simulations: Simulate spatial phenotype screens.

## Installation

spacr requires Tkinter for its graphical user interface features.

### Ubuntu

Before installing spacr, ensure Tkinter is installed:

(Tkinter is included with the standard Python installation on macOS, and Windows)

On Linux:

` sudo apt-get install python3-tk `

install spacr with pip

` pip install spacr `

To run spacr GUIs after installing spacr:

To generate masks: ` gui_mask ` To generate measurements and cropped images: ` gui_measure ` To curate masks for finetuning cellpose models: ` gui_make_masks ` To annotate paths to images in sql database created in gui_measure: ` gui_annotate ` Train torch CNNs/Transformers to classify single object images. ` gui_classify ` Simulate spatial phenotype screens. ` gui_sim `

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacr-0.0.15.tar.gz (159.1 kB view details)

Uploaded Source

Built Distribution

spacr-0.0.15-py3-none-any.whl (172.1 kB view details)

Uploaded Python 3

File details

Details for the file spacr-0.0.15.tar.gz.

File metadata

  • Download URL: spacr-0.0.15.tar.gz
  • Upload date:
  • Size: 159.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for spacr-0.0.15.tar.gz
Algorithm Hash digest
SHA256 3b6de3e2b46d804d525684f304f72c782ddd2f4ae009a84b4355c8a2bd6480ab
MD5 5f65adf45116d9f1f81e5a17304e8004
BLAKE2b-256 1be89c13e8f5b734da3a93b3fafa8c2e51355c278cf61e6d010cb81560ee7f9c

See more details on using hashes here.

File details

Details for the file spacr-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: spacr-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 172.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for spacr-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 66c7c247ee9462a06620212edccdc95731c7e6136ba8355d30b6fc40f63130a5
MD5 7418f507c09762ea8cbfaa5de04200ab
BLAKE2b-256 b7747d3bd6b40f9ec2b45ccdacf17fe87b4da658796fb862da6a89547eb3dddd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page