Skip to main content

Add a short description here!

Project description

spaCy WordNet

spaCy Wordnet is a simple custom component for using WordNet, MultiWordnet and WordNet domains with spaCy.

The component combines the NLTK wordnet interface with WordNet domains to allow users to:

  • Get all synsets for a processed token. For example, getting all the synsets (word senses) of the word bank.
  • Get and filter synsets by domain. For example, getting synonyms of the verb withdraw in the financial domain.

Getting started

The spaCy WordNet component can be easily integrated into spaCy pipelines. You just need the following:

Prerequisites

  • Python 3.X
  • spaCy

You also need to install the following NLTK wordnet data:

python -m nltk.downloader wordnet
python -m nltk.downloader omw

Install

pip install spacy-wordnet

Supported languages

Almost all Open Multi Wordnet languages are supported.

Usage

Once you choose the desired language (from the list of supported ones above), you will need to manually download a spaCy model for it. Check the list of available models for each language at SpaCy 2.x or SpaCy 3.x.

English example

Download example model:

python -m spacy download en_core_web_sm

Run:

import spacy

from spacy_wordnet.wordnet_annotator import WordnetAnnotator 

# Load an spacy model
nlp = spacy.load('en_core_web_sm')
# Spacy 3.x
nlp.add_pipe("spacy_wordnet", after='tagger')
# Spacy 2.x
# nlp.add_pipe(WordnetAnnotator(nlp, name="spacy_wordnet"), after='tagger')
token = nlp('prices')[0]

# wordnet object link spacy token with nltk wordnet interface by giving acces to
# synsets and lemmas 
token._.wordnet.synsets()
token._.wordnet.lemmas()

# And automatically tags with wordnet domains
token._.wordnet.wordnet_domains()

spaCy WordNet lets you find synonyms by domain of interest for example economy

economy_domains = ['finance', 'banking']
enriched_sentence = []
sentence = nlp('I want to withdraw 5,000 euros')

# For each token in the sentence
for token in sentence:
    # We get those synsets within the desired domains
    synsets = token._.wordnet.wordnet_synsets_for_domain(economy_domains)
    if not synsets:
        enriched_sentence.append(token.text)
    else:
        lemmas_for_synset = [lemma for s in synsets for lemma in s.lemma_names()]
        # If we found a synset in the economy domains
        # we get the variants and add them to the enriched sentence
        enriched_sentence.append('({})'.format('|'.join(set(lemmas_for_synset))))

# Let's see our enriched sentence
print(' '.join(enriched_sentence))
# >> I (need|want|require) to (draw|withdraw|draw_off|take_out) 5,000 euros
    

Portuguese example

Download example model:

python -m spacy download pt_core_news_sm

Run:

import spacy

from spacy_wordnet.wordnet_annotator import WordnetAnnotator 

# Load an spacy model
nlp = spacy.load('pt_core_news_sm')
# Spacy 3.x
nlp.add_pipe("spacy_wordnet", after='tagger', config={'lang': nlp.lang})
# Spacy 2.x
# nlp.add_pipe(WordnetAnnotator(nlp.lang), after='tagger')
text = "Eu quero retirar 5.000 euros"
economy_domains = ['finance', 'banking']
enriched_sentence = []
sentence = nlp(text)

# For each token in the sentence
for token in sentence:
    # We get those synsets within the desired domains
    synsets = token._.wordnet.wordnet_synsets_for_domain(economy_domains)
    if not synsets:
        enriched_sentence.append(token.text)
    else:
        lemmas_for_synset = [lemma for s in synsets for lemma in s.lemma_names('por')]
        # If we found a synset in the economy domains
        # we get the variants and add them to the enriched sentence
        enriched_sentence.append('({})'.format('|'.join(set(lemmas_for_synset))))

# Let's see our enriched sentence
print(' '.join(enriched_sentence))
# >> Eu (querer|desejar|esperar) retirar 5.000 euros

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spacy-wordnet-0.1.0.tar.gz (651.6 kB view hashes)

Uploaded source

Built Distribution

spacy_wordnet-0.1.0-py2.py3-none-any.whl (652.1 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page