Skip to main content

Transform hierarchies in 3D space.

Project description

PyPI version PyPI download month License: MIT Build Main Build Preview

spatial-transform

Lightweight libary for creating hierarchies in a 3D space, like Unity, Unreal, Blender or any other 3D application.

Properties like positions, rotations, directions and scales can be easily accessed and are calculated based on the parents space for the world space. Individual transforms can be attatched and detatched at any point and have some more comfort methods for easy modifications.

Why and intention

This libary is a side product of my master thesis, in order to extract conveniently local and world data features from a humanoid skeleton hierarchy. I could not find any libary that could do that, without bloat or the features I required for extraction or modification.

Installation

pip install spatial-transform

Notes

  • Pose is the class for all local space properties and operations. There is no awareness about other related space or hierarchy.
  • Transform extend the Pose class to add hierarchical wareness and provides additional properties and methods for the world space.
  • Euler is a class with static members only for converting euler angle into quaternions or matrices. It supports diffrent rotation orders and can be used to convert between
  • The package PyGLM is used for matrix, quaternion and vector calculations.
  • Same coordination space as openGL and GLM is used. Which is: Right-Handed, - Y+ is up, Z- is forward and positive rotations are counter clockwise.

Examples

Create and attach transforms

from SpatialTransform import Transform, Euler

# defining the transforms
hips = Transform('Hips', position=(0,2,0))
LeftLegUpper = Transform('LeftLegUpper', position=(+0.2,0,0))
LeftLegLower = Transform('LeftLegLower', position=(0,-1,0))
LeftLegFoot = Transform('LeftLegFoot', position=(0,-1,0))
RightLegUpper = Transform('RightLegUpper', position=(-0.2,0,0))
RightLegLower = Transform('RightLegLower', position=(0,-1,0))
RightLegFoot = Transform('RightLegFoot', position=(0,-1,0))

# defining the hierarchy
hips.attach(LeftLegUpper)
LeftLegUpper.attach(LeftLegLower)
LeftLegLower.attach(LeftLegFoot)

hips.attach(RightLegUpper)
RightLegUpper.attach(RightLegLower)
RightLegLower.attach(RightLegFoot)

# show the created hierarchy
hips.printTree()
print('\nWorld positions, local positions, joint directions:')
for item, index, depth in hips.layout():
    print(f'{item.PositionWorld} {item.Position} {item.ForwardWorld} {item.Name}')

# --------------------------- OUTPUT ---------------------------
# Hips
# +- LeftLegUpper
# |  +- LeftLegLower
# |     +- LeftLegFoot
# +- RightLegUpper
#    +- RightLegLower
#       +- RightLegFoot

# World positions, local positions, joint direction:
# vec3(            0,            2,            0 ) vec3(            0,            2,            0 ) Hips
# vec3(          0.2,            2,            0 ) vec3(          0.2,            0,            0 ) LeftLegUpper
# vec3(          0.2,            1,            0 ) vec3(            0,           -1,            0 ) LeftLegLower
# vec3(          0.2,            0,            0 ) vec3(            0,           -1,            0 ) LeftLegFoot
# vec3(         -0.2,            2,            0 ) vec3(         -0.2,            0,            0 ) RightLegUpper
# vec3(         -0.2,            1,            0 ) vec3(            0,           -1,            0 ) RightLegLower
# vec3(         -0.2,            0,            0 ) vec3(            0,           -1,            0 ) RightLegFoot

Interacting with transforms

from SpatialTransform import Transform

# the basic properties of the transform as position, scale and rotation can be changed by setting the value
# but the inverse-properties are read only
root = Transform()
root.PositionWorld = (1,2,3)
root.Scale = .1                     # accepts either a single value or a tuple of three
root.RotationWorld = (1, 0, 0, 0)   # rotations are in quaternions

# the rotation can be also read and changed with extra methods for simplified usage
root.setEuler((0, 90, 0))
root.getEuler(order='ZYX')
root.lookAtWorld((1, 1, 1))

# some methods do update the transform and keep childrens spatially unchanged
root.clearParent(keep=['position', 'rotation', 'scale'])
root.clearChildren(keep=['position', 'rotation', 'scale'])
root.applyPosition()
root.applyRotation(recursive=True)
root.appyScale(recursive=True)

# the transform provide two methods to convert arbitrary points and direction from and to the spaces
root.pointToWorld((5,4,3))
root.directionToLocal((2,3,4))

Fluent interface usage

from SpatialTransform import Transform

# because almost every method on the "Transform" object returns itself,
# the previous code of creating and attaching can also be written like:
hips = Transform('Hips', position=(0,2,0)).attach(
    Transform('LeftLegUpper', position=(+0.2,0,0)).attach(
        Transform('LeftLegLower', position=(0,-1,0)).attach(
            Transform('LeftLegFoot', position=(0,-1,0))
        )
    ),
    Transform('RightLegUpper', position=(-0.2,0,0)).attach(
        Transform('RightLegLower', position=(0,-1,0)).attach(
            Transform('RightLegFoot', position=(0,-1,0))
        )
    )
)

# multiple actions on a transform can be performed on a single line
feets = hips.setEuler((0, 180, 0)).applyRotation().filter('Foot')

# show the created hierarchy
hips.printTree()
print('\nPositions:')
for item, index, depth in hips.layout():
    print(f'{item.PositionWorld} {item.Position} {item.Name}')

# --------------------------- OUTPUT ---------------------------
# Hips
# +- LeftLegUpper
# |  +- LeftLegLower
# |     +- LeftLegFoot
# +- RightLegUpper
#    +- RightLegLower
#       +- RightLegFoot

# Positions:
# vec3(            0,            2,            0 ) vec3(            0,            2,            0 ) Hips
# vec3(         -0.2,            2,  1.74846e-08 ) vec3(         -0.2,            0,  1.74846e-08 ) LeftLegUpper
# vec3(         -0.2,            1,  1.74846e-08 ) vec3(            0,           -1,            0 ) LeftLegLower
# vec3(         -0.2,            0,  1.74846e-08 ) vec3(            0,           -1,            0 ) LeftLegFoot
# vec3(          0.2,            2, -1.74846e-08 ) vec3(          0.2,            0, -1.74846e-08 ) RightLegUpper
# vec3(          0.2,            1, -1.74846e-08 ) vec3(            0,           -1,            0 ) RightLegLower
# vec3(          0.2,            0, -1.74846e-08 ) vec3(            0,           -1,            0 ) RightLegFoot

Euler angles conversions

# the package also provides the static class 'Euler'
# the 'Transform' does also rely on that to convert between rotation representations
from SpatialTransform import Euler

# rotations are in radians here
matrix = Euler.toMatFrom((1, 2, .5), order='YZX', extrinsic=True)
quaternion = Euler.toQuatFrom((1, 2, .5), order='YZX', extrinsic=True)

angles1 = Euler.fromMatTo(matrix, order='XYZ', extrinsic=False)
angles2 = Euler.fromQuatTo(quaternion, order='XYZ', extrinsic=False)

print(angles1 - angles2)

# --------------------------- OUTPUT ---------------------------
# vec3(            0,            0,            0 )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spatial_transform-1.3.3.tar.gz (18.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

spatial_transform-1.3.3-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file spatial_transform-1.3.3.tar.gz.

File metadata

  • Download URL: spatial_transform-1.3.3.tar.gz
  • Upload date:
  • Size: 18.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for spatial_transform-1.3.3.tar.gz
Algorithm Hash digest
SHA256 4b31f9a2132166e6f5337af155b96a1576e2a4bb0935b82750f74632fc1b95d2
MD5 4dd5321116abd6a8b8b3c332ff3a6c76
BLAKE2b-256 938e097d2dfc585925c2e7cd0e1bc06577138212a069749be9d680c939d56499

See more details on using hashes here.

Provenance

The following attestation bundles were made for spatial_transform-1.3.3.tar.gz:

Publisher: build_main.yml on Wasserwecken/spatial-transform

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file spatial_transform-1.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for spatial_transform-1.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0616333ca64e3efa50ec883ca87f96ff049e4a5fdb58af97b2d6ffcdd224001c
MD5 a8bbc1eb1d13742aea171a586c6f812a
BLAKE2b-256 ba8afd9c94bd327ad8212f3cda6a8788f6c8c23fdd848fb203c23040902d9c84

See more details on using hashes here.

Provenance

The following attestation bundles were made for spatial_transform-1.3.3-py3-none-any.whl:

Publisher: build_main.yml on Wasserwecken/spatial-transform

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page