Skip to main content

generate OpenAPI document and validate request&response with Python annotations.

Project description

Spectree

GitHub Actions pypi versions Language grade: Python Python document

Yet another library to generate OpenAPI document and validate request & response with Python annotations.

Features

  • Less boilerplate code, only annotations, no need for YAML :sparkles:
  • Generate API document with Redoc UI or Swagger UI :yum:
  • Validate query, JSON data, response data with pydantic :wink:
  • Current support:

Quick Start

install with pip: pip install spectree

Examples

Check the examples folder.

Step by Step

  1. Define your data structure used in (query, json, headers, cookies, resp) with pydantic.BaseModel
  2. create spectree.SpecTree instance with the web framework name you are using, like api = SpecTree('flask')
  3. api.validate decorate the route with
    • query
    • json
    • headers
    • cookies
    • resp
    • tags
  4. access these data with context(query, json, headers, cookies) (of course, you can access these from the original place where the framework offered)
    • flask: request.context
    • falcon: req.context
    • starlette: request.context
  5. register to the web application api.register(app)
  6. check the document at URL location /apidoc/redoc or /apidoc/swagger

If the request doesn't pass the validation, it will return a 422 with JSON error message(ctx, loc, msg, type).

Falcon response validation

For falcon response, this library only validates against media as it is the serializable object. Response.body(deprecated in falcon 3.0 and replaced by text) is a string representing response content and will not be validated. For no assigned media situation, resp parameter in api.validate should be like Response(HTTP_200=None)

Opt-in type annotation feature

This library also supports injection of validated fields into view function arguments along with parameter annotation based type declaration. This works well with linters that can take advantage of typing features like mypy. See examples section below.

How To

How to add summary and description to endpoints?

Just add docs to the endpoint function. The 1st line is the summary, and the rest is the description for this endpoint.

How to add description to parameters?

Check the pydantic document about description in Field.

Any config I can change?

Of course. Check the config document.

You can update the config when init the spectree like:

SpecTree('flask', title='Demo API', version='v1.0', path='doc')

What is Response and how to use it?

To build a response for the endpoint, you need to declare the status code with format HTTP_{code} and corresponding data (optional).

Response(HTTP_200=None, HTTP_403=ForbidModel)
Response('HTTP_200') # equals to Response(HTTP_200=None)

What should I return when I'm using the library?

No need to change anything. Just return what the framework required.

How to logging when the validation failed?

Validation errors are logged with INFO level. Details are passed into extra. Check the falcon example for details.

How can I write a customized plugin for another backend framework?

Inherit spectree.plugins.base.BasePlugin and implement the functions you need. After that, init like api = SpecTree(backend=MyCustomizedPlugin).

How can I change the response when there is a validation error? Can I record some metrics?

This library provides before and after hooks to do these. Check the doc or the test case. You can change the handlers for SpecTree or for a specific endpoint validation.

Demo

Try it with http post :8000/api/user name=alice age=18. (if you are using httpie)

Flask

from flask import Flask, request, jsonify
from pydantic import BaseModel, Field, constr
from spectree import SpecTree, Response


class Profile(BaseModel):
    name: constr(min_length=2, max_length=40) # Constrained Str
    age: int = Field(
        ...,
        gt=0,
        lt=150,
        description='user age(Human)'
    )

    class Config:
        schema_extra = {
            # provide an example
            'example': {
                'name': 'very_important_user',
                'age': 42,
            }
        }


class Message(BaseModel):
    text: str


app = Flask(__name__)
api = SpecTree('flask')


@app.route('/api/user', methods=['POST'])
@api.validate(json=Profile, resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
def user_profile():
    """
    verify user profile (summary of this endpoint)

    user's name, user's age, ... (long description)
    """
    print(request.context.json) # or `request.json`
    return jsonify(text='it works')


if __name__ == "__main__":
    api.register(app) # if you don't register in api init step
    app.run(port=8000)

Flask example with type annotation

# opt in into annotations feature
api = SpecTree("flask", annotations=True)


@app.route('/api/user', methods=['POST'])
@api.validate(resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
def user_profile(json: Profile):
    """
    verify user profile (summary of this endpoint)

    user's name, user's age, ... (long description)
    """
    print(json) # or `request.json`
    return jsonify(text='it works')

Falcon

import falcon
from wsgiref import simple_server
from pydantic import BaseModel, Field, constr
from spectree import SpecTree, Response


class Profile(BaseModel):
    name: constr(min_length=2, max_length=40)  # Constrained Str
    age: int = Field(
        ...,
        gt=0,
        lt=150,
        description='user age(Human)'
    )


class Message(BaseModel):
    text: str


api = SpecTree('falcon')


class UserProfile:
    @api.validate(json=Profile, resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
    def on_post(self, req, resp):
        """
        verify user profile (summary of this endpoint)

        user's name, user's age, ... (long description)
        """
        print(req.context.json)  # or `req.media`
        resp.media = {'text': 'it works'}


if __name__ == "__main__":
    app = falcon.API()
    app.add_route('/api/user', UserProfile())
    api.register(app)

    httpd = simple_server.make_server('localhost', 8000, app)
    httpd.serve_forever()

Falcon with type annotations

# opt in into annotations feature
api = SpecTree("falcon", annotations=True)


class UserProfile:
    @api.validate(resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
    def on_post(self, req, resp, json: Profile):
        """
        verify user profile (summary of this endpoint)

        user's name, user's age, ... (long description)
        """
        print(req.context.json)  # or `req.media`
        resp.media = {'text': 'it works'}

Starlette

import uvicorn
from starlette.applications import Starlette
from starlette.routing import Route, Mount
from starlette.responses import JSONResponse
from pydantic import BaseModel, Field, constr
from spectree import SpecTree, Response


class Profile(BaseModel):
    name: constr(min_length=2, max_length=40)  # Constrained Str
    age: int = Field(
        ...,
        gt=0,
        lt=150,
        description='user age(Human)'
    )


class Message(BaseModel):
    text: str


api = SpecTree('starlette')


@api.validate(json=Profile, resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
async def user_profile(request):
    """
    verify user profile (summary of this endpoint)

    user's name, user's age, ... (long description)
    """
    print(request.context.json)  # or await request.json()
    return JSONResponse({'text': 'it works'})


if __name__ == "__main__":
    app = Starlette(routes=[
        Mount('api', routes=[
            Route('/user', user_profile, methods=['POST']),
        ])
    ])
    api.register(app)

    uvicorn.run(app)

Starlette example with type annotations

# opt in into annotations feature
api = SpecTree("flask", annotations=True)


@api.validate(resp=Response(HTTP_200=Message, HTTP_403=None), tags=['api'])
async def user_profile(request, json=Profile):
    """
    verify user profile (summary of this endpoint)

    user's name, user's age, ... (long description)
    """
    print(request.context.json)  # or await request.json()
    return JSONResponse({'text': 'it works'})

FAQ

ValidationError: missing field for headers

The HTTP headers' keys in Flask are capitalized, in Falcon are upper cases, in Starlette are lower cases. You can use pydantic.root_validators(pre=True) to change all the keys into lower cases or upper cases.

ValidationError: value is not a valid list for query

Since there is no standard for HTTP query with multiple values, it's hard to find the way to handle this for different web frameworks. So I suggest not to use list type in query until I find a suitable way to fix it.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spectree-0.4.1.tar.gz (20.4 kB view details)

Uploaded Source

Built Distribution

spectree-0.4.1-py3-none-any.whl (24.5 kB view details)

Uploaded Python 3

File details

Details for the file spectree-0.4.1.tar.gz.

File metadata

  • Download URL: spectree-0.4.1.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for spectree-0.4.1.tar.gz
Algorithm Hash digest
SHA256 cb8b9d0792fe0a4125f828a6cc0b954ca3e4b7610f17b0998265aeb812ba3d55
MD5 b02095d4e171a254820b8b18b688574b
BLAKE2b-256 1626d133deed3e4489f5258bbdbb3ffbbd31eac2df974b4225fe83ece6836634

See more details on using hashes here.

File details

Details for the file spectree-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: spectree-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for spectree-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 432c4d3d150b703b791e81168c6788800de621ed19f6f21897eba3c381f9d4e2
MD5 55a4c731ec2365e1ab8bb978f63d631c
BLAKE2b-256 99adf78113c1800922e9c3f00fd9a813af1ae1033bbbe3fcadd4a7db5677c097

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page