Skip to main content

A simple Python package to calculate drought indices for time series such as the SPI, SPEI and SGI.

Project description

SPEI

PyPI PyPi Supported Python Versions Code Size PyPi Downloads License

JOSS DOI

Tests CodacyCoverage CodacyGrade Typed: MyPy Formatter and Linter: ruff

SPEI is a simple Python package to calculate drought indices for hydrological time series. This package uses popular Python packages such as Pandas and Scipy to make it easy and versatile for the user to calculate the drought indices. Pandas Series are great for dealing with time series; providing interpolation, rolling average, and other manipulation options. SciPy enables us to use all different kinds of distributions to fit the data. Different popular drought indices are supported such as the SPI (Standardized Precipitation Index), SPEI (Standardized Precipitation Evaporation Index), and SGI (Standardized Groundwater Index).

If you use this software for either the visualization and/or analysis, please cite this package via our article in the Journal of Open Source Software:

Vonk, M. A. (2025). SPEI: A Python package for calculating and visualizing drought indices. Journal of Open Source Software, 10(111), 8454. doi.org/10.21105/joss.08454.

Or cite a specific version in the Zenodo archive:

Vonk, M. A. (XXXX). SPEI: A simple Python package to calculate and visualize drought indices (vX.X.X). Zenodo. doi.org/10.5281/zenodo.10816740.

Available Drought Indices

Drought Index Abbreviation Literature
Standardized Precipitation Index SPI 1
Standardized Precipitation Evaporation Index* SPEI 2
Standardized Groundwater Index SGI 3,4
Standardized Streamflow Index SSFI 5,6
Standardized Soil Moisture Index SSMI 7

The package is not limited to only these five drought indices. If any of the distributions in the Scipy library is valid on the observed hydrological series, the drought index can be calculated.

*For the calculation of potential evaporation, take a look at pyet. This is another great package that also uses pandas Series to calculate different kinds of potential evaporation time series.

Installation

To get the latest stable version install using:

pip install spei

To get the development version download or clone the GitHub repository to your local device. Install using:

pip install -e <download_directory>

Literature

This list of scientific literature is helpful as a reference to understand the context and application of drought indices.

  1. Lloyd-Hughes, B. and M.A. Saunders (2002) - A Drought Climatology for Europe. DOI: 10.1002/joc.846
  2. Vicente-Serrano, S.M., S. Beguería and J.I. López-Moreno (2010) - A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. DOI: 10.1175/2009JCLI2909.1
  3. Bloomfield, J.P. and B.P. Marchant (2013) - Analysis of groundwater drought building on the standardised precipitation index approach. DOI: 10.5194/hess-17-4769-2013
  4. Babre, A., A. Kalvāns, Z. Avotniece, I. Retiķe, J. Bikše, K.P.M. Jemeljanova, A. Zelenkevičs and A. Dēliņa (2022) - The use of predefined drought indices for the assessment of groundwater drought episodes in the Baltic States over the period 1989–2018. DOI: 10.1016/j.ejrh.2022.101049
  5. Vicente-Serrano, S. M., J. I. López-Moreno, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina, and E. Morán-Tejeda (2012). Accurate Computation of a Streamflow Drought Index. Journal of Hydrologic Engineering. American Society of Civil Engineers. DOI: 10.1061/(asce)he.1943-5584.0000433
  6. Tijdeman, E., K. Stahl and L.M. Tallaksen (2020) - Drought characteristics derived based on the Standardized Streamflow Index: A large sample comparison for parametric and nonparametric methods. DOI: 10.1029/2019WR026315
  7. Carrão. H., Russo, S., Sepulcre-Canto, G., Barbosa, P.: An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. DOI: 10.1016/j.jag.2015.06.011s

Publications

These are scientific publications that use and cite this Python package:

Adla, S., Šaponjić, A., Tyagi, A., Nagi, A., Pastore, P., & Pande, S. (2024). Steering agricultural interventions towards sustained irrigation adoption by farmers: socio-psychological analysis of irrigation practices in Maharashtra, India. Hydrological Sciences Journal, 69(12), 1586–1603. https://doi.org/10.1080/02626667.2024.2376709

van Mourik, J., Ruijsch, D., van der Wiel, K., Hazeleger, W., & Wanders, N. (2025). Regional drivers and characteristics of multi-year droughts. Weather and Climate Extremes, 48, 100748. https://doi.org/10.1016/j.wace.2025.100748

Segura-Barrero, R., Lauvaux, T., Lian, J., Ciais, P., Badia, A., Ventura, S., Bazzi, H., Abbessi, E., Fu, Z., Xiao, J., Li, X., & Villalba, G. (2025). Heat and Drought Events Alter Biogenic Capacity to Balance CO2 Budget in South-Western Europe. Global biogeochemical cycles, 39(1), e2024GB008163. https://doi.org/10.1029/2024GB008163

Panigrahi, S., Vidyarthi, V.K. (2025). Assessing the Suitability of SPI and SPEI in Steppe Hot and Arid Climatic Zones in India. In: Sefelnasr, A., Sherif, M., Singh, V.P. (eds) Water Resources Management and Sustainability. Water Science and Technology Library, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-031-80520-2_12

Ashcroft L, Ritman M, Bridgman H, Thornton K, Di Gravio G, Oates W, Belfield R, Belfield E. (2025). A climatology of meteorological droughts in New England, Australia, 1880–2022. Journal of Southern Hemisphere Earth Systems Science 75, ES25013. https://doi.org/10.1071/ES25013

Patidar, R., S. M. Pingale, D. Khare, and S. Choudhary (2025). “ Assessing Spatio-Temporal Meteorological Drought Dynamics Across Indian Agro-Climatic Zones: A Long-Term Perspective.” International Journal of Climatology 45, no. 16: e70146. https://doi.org/10.1002/joc.70146

Lekarkar, K., Rakovec, O., Kumar, R., Dondeyne, S., and van Griensven, A. (2025). Soil moisture droughts in Belgium during 2011–2020 were the worst in five decades, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-4526,

Butterfield, B. A., Furtado, J. C., Salazar, M. L., & Kuster, E. L. (2025). Assessing climate change and whiplash events in national parks. National Weather Center Research Experiences for Undergraduates Program.

Saponaro, V., Dalmonech, D., Vangi, E., Puchi, P. F., Rezaie, N., D’Andrea, E., Tomelleri, E., & Collalti, A. (2026). Climate change, more than management, drives short- and long-term changes in iWUE in a sub-Alpine beech forest. Journal of Forestry Research, 37(1), 16. https://doi.org/10.1007/s11676-025-01942-8

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spei-0.8.2.tar.gz (42.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

spei-0.8.2-py3-none-any.whl (35.9 kB view details)

Uploaded Python 3

File details

Details for the file spei-0.8.2.tar.gz.

File metadata

  • Download URL: spei-0.8.2.tar.gz
  • Upload date:
  • Size: 42.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for spei-0.8.2.tar.gz
Algorithm Hash digest
SHA256 9019289e2d009fe5fab3dceac07b73e07ad97afc45ed5319135a8173bafb31b3
MD5 d582925e176086d204eab3d70f4e9155
BLAKE2b-256 941a87fcb72aafacbcf012beffbfcd4979a6ef233f259f8ad41c8a0357892672

See more details on using hashes here.

File details

Details for the file spei-0.8.2-py3-none-any.whl.

File metadata

  • Download URL: spei-0.8.2-py3-none-any.whl
  • Upload date:
  • Size: 35.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for spei-0.8.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a51d95f2572f6bff6032bff9d6d06b967e7e86b35588bd20d5e6800aba8fe0b9
MD5 298543f22106db87eb35e837657d7dc7
BLAKE2b-256 01c111083bf8169df3e43bc996dc0f1df66575d8a9401e0f81ce60b8d524d1d5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page