Skip to main content

SpKit: Signal Processing toolkit Author::Nikesh Bajaj https://github.com/Nikeshbajaj/spkit

Project description

Signal Processing toolkit

Documentation Status License: MIT PyPI version fury.io PyPI pyversions GitHub release PyPI format PyPI implementation HitCount GitHub commit activity Percentage of issues still open PyPI download month PyPI download week

Generic badge Ask Me Anything !

PyPI - Downloads

Links: Github | PyPi - project | _ Installation: pip install spkit


Table of contents


New Updates

New Updates:: Decision Tree View Notebooks

Version: 0.0.7

  • Analysing the performance measure of trained tree at different depth - with ONE-TIME Training ONLY
  • Optimize the depth of tree
  • Shrink the trained tree with optimal depth
  • Plot the Learning Curve
  • Classification: Compute the probability and counts of label at a leaf for given example sample
  • Regression: Compute the standard deviation and number of training samples at a leaf for given example sample

  • Version: 0.0.6: Works with catogorical features without converting them into binary vector
  • Version: 0.0.5: Toy examples to understand the effect of incresing max_depth of Decision Tree

Installation

Requirement: numpy, matplotlib, scipy.stats, scikit-learn

with pip

pip install spkit

update with pip

pip install spkit --upgrade

Build from the source

Download the repository or clone it with git, after cd in directory build it from source with

python setup.py install

Functions list

Signal Processing Techniques

Information Theory functions for real valued signals

  • Entropy : Shannon entropy, Rényi entropy of order α, Collision entropy
  • Joint entropy
  • Conditional entropy
  • Mutual Information
  • Cross entropy
  • Kullback–Leibler divergence
  • Computation of optimal bin size for histogram using FD-rule
  • Plot histogram with optimal bin size

Matrix Decomposition

  • SVD
  • ICA using InfoMax, Extended-InfoMax, FastICA & Picard

Linear Feedback Shift Register

  • pylfsr

Continuase Wavelet Transform and other functions comming soon..

Machine Learning models - with visualizations

  • Logistic Regression
  • Naive Bayes
  • Decision Trees
  • DeepNet (to be updated)

Examples

Information Theory

View in notebook

import numpy as np
import matplotlib.pyplot as plt
import spkit as sp

x = np.random.rand(10000)
y = np.random.randn(10000)

#Shannan entropy
H_x= sp.entropy(x,alpha=1)
H_y= sp.entropy(y,alpha=1)

#Rényi entropy
Hr_x= sp.entropy(x,alpha=2)
Hr_y= sp.entropy(y,alpha=2)

H_xy= sp.entropy_joint(x,y)

H_x1y= sp.entropy_cond(x,y)
H_y1x= sp.entropy_cond(y,x)

I_xy = sp.mutual_Info(x,y)

H_xy_cross= sp.entropy_cross(x,y)

D_xy= sp.entropy_kld(x,y)


print('Shannan entropy')
print('Entropy of x: H(x) = ',H_x)
print('Entropy of y: H(y) = ',H_y)
print('-')
print('Rényi entropy')
print('Entropy of x: H(x) = ',Hr_x)
print('Entropy of y: H(y) = ',Hr_y)
print('-')
print('Mutual Information I(x,y) = ',I_xy)
print('Joint Entropy H(x,y) = ',H_xy)
print('Conditional Entropy of : H(x|y) = ',H_x1y)
print('Conditional Entropy of : H(y|x) = ',H_y1x)
print('-')
print('Cross Entropy of : H(x,y) = :',H_xy_cross)
print('Kullback–Leibler divergence : Dkl(x,y) = :',D_xy)



plt.figure(figsize=(12,5))
plt.subplot(121)
sp.HistPlot(x,show=False)

plt.subplot(122)
sp.HistPlot(y,show=False)
plt.show()

Independent Component Analysis

View in notebook

from spkit import ICA
from spkit.data import load_data
X,ch_names = load_data.eegSample()

x = X[128*10:128*12,:]
t = np.arange(x.shape[0])/128.0

ica = ICA(n_components=14,method='fastica')
ica.fit(x.T)
s1 = ica.transform(x.T)

ica = ICA(n_components=14,method='infomax')
ica.fit(x.T)
s2 = ica.transform(x.T)

ica = ICA(n_components=14,method='picard')
ica.fit(x.T)
s3 = ica.transform(x.T)

ica = ICA(n_components=14,method='extended-infomax')
ica.fit(x.T)
s4 = ica.transform(x.T)

Machine Learning

Logistic Regression - View in notebook

Naive Bayes - View in notebook

Decision Trees - View in notebook

[source code] | [jupyter-notebooks]

Plottng tree while training

**view in repository **

Linear Feedback Shift Register

import numpy as np
from spkit.pylfsr import LFSR
## Example 1  ## 5 bit LFSR with x^5 + x^2 + 1
L = LFSR()
L.info()
L.next()
L.runKCycle(10)
L.runFullCycle()
L.info()
tempseq = L.runKCycle(10000)    # generate 10000 bits from current state

Contacts:

PhD Student: Queen Mary University of London


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spkit-0.0.8.tar.gz (217.8 kB view details)

Uploaded Source

Built Distribution

spkit-0.0.8-py3-none-any.whl (212.6 kB view details)

Uploaded Python 3

File details

Details for the file spkit-0.0.8.tar.gz.

File metadata

  • Download URL: spkit-0.0.8.tar.gz
  • Upload date:
  • Size: 217.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for spkit-0.0.8.tar.gz
Algorithm Hash digest
SHA256 6aed020973636b1031c9c39779eeb9bfcdf94becf2585d0834dc932266dbe8ec
MD5 2f7fb6808861329d6109b92ff2b25c74
BLAKE2b-256 819ca0405f0fd728c3e1f88961695b0a445d8a7763a03913fa20be5f5aabcd00

See more details on using hashes here.

File details

Details for the file spkit-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: spkit-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 212.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.0.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for spkit-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 96d52f6c1539b01ba89e81c586d19dc6667d69b3564c69cc1a4492fbf4aa4b09
MD5 e4ccb719dea01a527c74de1a214e8d41
BLAKE2b-256 d17e23a34c0e6fbe4df69a5e9ce5c8b00926eb3c38891079fc370a3edc6584fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page