Skip to main content

Package for calculating and visualising confidence intervals, e.g. for A/B test analysis.

Project description

Spotify Confidence

Status Latest release Python Python

Python library for AB test analysis.

Why use Spotify Confidence?

Spotify Confidence provides convinience wrappers around statsmodel's various functions for computing p-values and confidence intervalls. With Spotify Confidence it's easy to compute several p-values and confidence bounds in one go, e.g. one for each country or for each date. Each function comes in two versions:

  • one that return a pandas dataframe,
  • one that returns a Chartify chart.

Spotify Confidence has support calculating p-values and confidence intervals using Z-statistics, Student's T-statistics (or more exactly Welch's T-test), as well as Chi-squared statistics.

There is also a Bayesian alternative in the BetaBinomial class.


import spotify_confidence as confidence
import pandas as pd

data = pd.DataFrame(
    {'variation_name': ['treatment1', 'control', 'treatment2', 'treatment3'],
     'success': [50, 40, 10, 20],
     'total': [100, 100, 50, 60]

test = confidence.ZTest(
test.difference(level_1='control', level_2='treatment1')
test.multiple_difference(level='control', level_as_reference=True)

test.difference_plot(level_1='control', level_2='treatment1').show()
test.multiple_difference_plot(level='control', level_as_reference=True).show()

See jupyter notebooks in examples folder for more complete examples.


Spotify Confidence can be installed via pip:

pip install spotify-confidence

Find the latest release version here

Code of Conduct

This project adheres to the Open Code of Conduct By participating, you are expected to honor this code.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spotify-confidence-2.7.1.tar.gz (88.5 kB view hashes)

Uploaded source

Built Distribution

spotify_confidence-2.7.1-py3-none-any.whl (81.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page