Skip to main content

Uses tokenized query returned by python-sqlparse and generates query metadata

Project description

sql-metadata

PyPI Tests Coverage Status Code style: black Maintenance Downloads

Uses tokenized query returned by python-sqlparse and generates query metadata.

Extracts column names and tables used by the query. Automatically conduct column alias resolution, sub queries aliases resolution as well as tables aliases resolving.

Provides also a helper for normalization of SQL queries.

Supported queries syntax:

(note that listed backends can differ quite substantially but should work in regard of query types supported by sql-metadata)

You can test the capabilities of sql-metadata with an interactive demo: https://sql-app.infocruncher.com/

Usage

pip install sql-metadata

Extracting raw sql-metadata tokens

from sql_metadata import Parser

# extract raw sql-metadata tokens
Parser("SELECT * FROM foo").tokens
# ['SELECT', '*', 'FROM', 'foo']

Extracting columns from query

from sql_metadata import Parser

# get columns from query - for more examples see `tests/test_getting_columns.py`
Parser("SELECT test, id FROM foo, bar").columns
# ['test', 'id']

Parser("INSERT /* VoteHelper::addVote xxx */  INTO `page_vote` (article_id,user_id,`time`) VALUES ('442001','27574631','20180228130846')").columns
# ['article_id', 'user_id', 'time']

parser = Parser("SELECT a.* FROM product_a.users AS a JOIN product_b.users AS b ON a.ip_address = b.ip_address")

# note that aliases are auto-resolved
parser.columns
# ['product_a.*', 'product_a.users.ip_address', 'product_b.users.ip_address']

# note that you can also extract columns with their place in the query
# which will return dict with lists divided into select, where, order_by, group_by, join, insert and update
parser.columns_dict
# {'select': ['product_a.users.*'], 'join': ['product_a.users.ip_address', 'product_b.users.ip_address']}

Extracting columns aliases from query

from sql_metadata import Parser
parser = Parser("SELECT a, (b + c - u) as alias1, custome_func(d) alias2 from aa, bb order by alias1")

# note that columns list do not contain aliases of the columns
parser.columns
# ["a", "b", "c", "u", "d"]

# but you can still extract aliases names
parser.columns_aliases_names
# ["alias1", "alias2"]

# aliases are resolved to the columns which they refer to
parser.columns_aliases
# {"alias1": ["b", "c", "u"], "alias2": "d"}

# you can also extract aliases used by section of the query in which they are used
parser.columns_aliases_dict
# {"order_by": ["alias1"], "select": ["alias1", "alias2"]}

# the same applies to aliases used in queries section when you extract columns_dict
# here only the alias is used in order by but it's resolved to actual columns
assert parser.columns_dict == {'order_by': ['b', 'c', 'u'],
                               'select': ['a', 'b', 'c', 'u', 'd']}

Extracting tables from query

from sql_metadata import Parser

# get tables from query - for more examples see `tests/test_getting_tables.py`
Parser("SELECT a.* FROM product_a.users AS a JOIN product_b.users AS b ON a.ip_address = b.ip_address").tables
# ['product_a.users', 'product_b.users']

Parser("SELECT test, id FROM foo, bar").tables
# ['foo', 'bar']

# you can also extract aliases of the tables as a dictionary
parser = Parser("SELECT f.test FROM foo AS f")

# get table aliases
parser.tables_aliases
# {'f': 'foo'}

# note that aliases are auto-resolved for columns
parser.columns
# ["foo.test"]

Extracting values from insert query

from sql_metadata import Parser

parser = Parser(
    "INSERT /* VoteHelper::addVote xxx */  INTO `page_vote` (article_id,user_id,`time`) " 
    "VALUES ('442001','27574631','20180228130846')"
)
# extract values from query
parser.values
# ["442001", "27574631", "20180228130846"]

# extract a dictionary with column-value pairs
parser.values_dict
#{"article_id": "442001", "user_id": "27574631", "time": "20180228130846"}

# if column names are not set auto-add placeholders
parser = Parser(
    "INSERT IGNORE INTO `table` VALUES (9, 2.15, '123', '2017-01-01');"
)
parser.values
# [9, 2.15, "123", "2017-01-01"]

parser.values_dict
#{"column_1": 9, "column_2": 2.15, "column_3": "123", "column_4": "2017-01-01"}

Extracting limit and offset

from sql_metadata import Parser

Parser('SELECT foo_limit FROM bar_offset LIMIT 50 OFFSET 1000').limit_and_offset
# (50, 1000)

Parser('SELECT foo_limit FROM bar_offset limit 2000,50').limit_and_offset
# (50, 2000)

Extracting with names

from sql_metadata import Parser

parser = Parser(
    """
WITH
    database1.tableFromWith AS (SELECT aa.* FROM table3 as aa 
                                left join table4 on aa.col1=table4.col2),
    test as (SELECT * from table3)
SELECT
  "xxxxx"
FROM
  database1.tableFromWith alias
LEFT JOIN database2.table2 ON ("tt"."ttt"."fff" = "xx"."xxx")
"""
)

# get names/ aliases of with statements
parser.with_names
# ["database1.tableFromWith", "test"]

# get definition of with queries
parser.with_queries
# {"database1.tableFromWith": "SELECT aa.* FROM table3 as aa left join table4 on aa.col1=table4.col2"
#  "test": "SELECT * from table3"}

# note that names of with statements do not appear in tables
parser.tables
# ["table3", "table4", "database2.table2"]

Extracting sub-queries

from sql_metadata import Parser

parser = Parser(
"""
SELECT COUNT(1) FROM
(SELECT std.task_id FROM some_task_detail std WHERE std.STATUS = 1) a
JOIN (SELECT st.task_id FROM some_task st WHERE task_type_id = 80) b
ON a.task_id = b.task_id;
"""
)

# get sub-queries dictionary
parser.subqueries
# {"a": "SELECT std.task_id FROM some_task_detail std WHERE std.STATUS = 1",
#  "b": "SELECT st.task_id FROM some_task st WHERE task_type_id = 80"}


# get names/ aliases of sub-queries / derived tables
parser.subqueries_names
# ["a", "b"]

# note that columns coming from sub-queries are resolved to real columns
parser.columns
#["some_task_detail.task_id", "some_task_detail.STATUS", "some_task.task_id", 
# "task_type_id"]

# same applies for columns_dict, note the join columns are resolved
parser.columns_dict
#{'join': ['some_task_detail.task_id', 'some_task.task_id'],
# 'select': ['some_task_detail.task_id', 'some_task.task_id'],
# 'where': ['some_task_detail.STATUS', 'task_type_id']}

See tests file for more examples of a bit more complex queries.

Queries normalization and comments extraction

from sql_metadata import Parser
parser = Parser('SELECT /* Test */ foo FROM bar WHERE id in (1, 2, 56)')

# generalize query
parser.generalize
# 'SELECT foo FROM bar WHERE id in (XYZ)'

# remove comments
parser.without_comments
# 'SELECT foo FROM bar WHERE id in (1, 2, 56)'

# extract comments
parser.comments
# ['/* Test */']

See test/test_normalization.py file for more examples of a bit more complex queries.

Migrating from sql_metadata 1.x

sql_metadata.compat module has been implemented to make the introduction of sql-metadata v2.0 smoother.

You can use it by simply changing the imports in your code from:

from sql_metadata import get_query_columns, get_query_tables

into:

from sql_metadata.compat import get_query_columns, get_query_tables

The following functions from the old API are available in the sql_metadata.compat module:

  • generalize_sql
  • get_query_columns (since #131 columns aliases ARE NOT returned by this function)
  • get_query_limit_and_offset
  • get_query_tables
  • get_query_tokens
  • preprocess_query

Authors and contributors

Created and maintained by @macbre with a great contributions from @collerek and the others.

Stargazers over time

Stargazers over time

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sql_metadata_fork-2.3.0.tar.gz (23.0 kB view details)

Uploaded Source

Built Distribution

sql_metadata_fork-2.3.0-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file sql_metadata_fork-2.3.0.tar.gz.

File metadata

  • Download URL: sql_metadata_fork-2.3.0.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.9.0 Darwin/21.2.0

File hashes

Hashes for sql_metadata_fork-2.3.0.tar.gz
Algorithm Hash digest
SHA256 1af02581efbd03e23f5327338b59ee68dd9bed45259d427a9770549044bda976
MD5 68405849b250e607a390ca9a09b97517
BLAKE2b-256 16fac65401660da28427ebcdcad90c3e17e652f0fd140af4a21f5ecb1045c743

See more details on using hashes here.

File details

Details for the file sql_metadata_fork-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: sql_metadata_fork-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.9.0 Darwin/21.2.0

File hashes

Hashes for sql_metadata_fork-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 266fb358475f7825463dec8ec0e5dbb87ae5b3fea9fab13e38a15a93dbc5cbd9
MD5 3db359e33d81889b1f796b9e58a20acf
BLAKE2b-256 17013b9c709872a08ca984ad6e2d09b7a812046d47973b6fbeba6d54e5e7de3b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page