Skip to main content

CRUD operations on nested SQLAlchemy ORM-models using Pydantic

Project description

sqlalchemy-pydantic-orm

This library makes it a lot easier to do nested database operation with SQLAlchemy. With this library it is for example possible to validate, convert, and upload a 100-level deep nested JSON (dict) to its corresponding tables in a given database, within 3 lines of code.

Pydantic is used for creating the dataclass and validating it. Pydantic already has a function called .from_orm() that can do a nested get operation, but it only supports ORM -> Pydantic and not Pydantic -> ORM. That's exactly where this library fills in, with 2 specific functions .orm_create() and .orm_update(), and one general function .to_orm() that combines the functionality of the first 2, calling one or the other, depending on if there is an id provided.

Requirements

  • Python 3.8+
  • SQLAlchemy 1.4+
  • Pydantic 1.8+

Installation

$ pip install sqlalchemy-pydantic-orm

To tinker with the code yourself, install the full dependencies with:

$ pip install sqlalchemy-pydantic-orm[dev]

Useful references

Examples

Below 1 example is provided (more coming).

For a bigger and more detailed example you can look at the /examples/ folder.

Example 1 - Using manual created schemas

Create your own Pydantic schemas and link them to the SQLAlchemy ORM-models.

Create your SQLAlchemy ORM-models (one-to-one or one-to-many)

class Parent(Base):
    id = Column(Integer, primary_key=True, index=True, nullable=False)
    name = Column(String, nullable=False)
    car = relationship("Car", cascade="all, delete", uselist=False, back_populates="owner")
    children = relationship("Child", cascade="all, delete")

class Car(Base):
    id = Column(Integer, primary_key=True, index=True, nullable=False)
    color = Column(String, nullable=False)
    owner_id = Column(Integer, ForeignKey("parents.id"), nullable=False)
    owner = relationship("Parent", back_populates="car")

class Child(Base):
    id = Column(Integer, primary_key=True, index=True, nullable=False)
    name = Column(String, nullable=False)
    parent_id = Column(Integer, ForeignKey("parents.id"), nullable=False)

Create your Pydantic base and CRUD schemas using these ORM models, and the imported ORMBaseSchema

Base schemas

from sqlalchemy_pydantic_orm import ORMBaseSchema
from .models import Parent, Car, Child

class ParentBase(ORMBaseSchema):
    name: str
    _orm_model = PrivateAttr(Parent)

class CarBase(ORMBaseSchema):
    color: str
    _orm_model = PrivateAttr(models.Car)

class ChildBase(ORMBaseSchema):
    name: str
    _orm_model = PrivateAttr(models.Child)

GET schemas

class Parent(ParentBase):
    id: int
    children: List[Child]
    car: Car

class Car(CarBase):
    id: int

class Child(ChildBase):
    id: int

CREATE/UPDATE schemas

class ParentCreate(ParentBase):
    id: Optional[int]
    children: List[ChildCreate]
    car: CarCreate

class CarCreate(CarBase):
    id: Optional[int]

class ChildCreate(ChildBase):
    id: Optional[int]

Use your schemas to do nested CRUD operations.

with ConnectionDatabase() as db:
    create_schema = schemas.ParentCreate.parse_obj(create_dict)
    parent_db = create_schema.orm_create()
    db.add(parent_db)
    db.commit()

    db_create_schema = schemas.Parent.from_orm(parent_db)
    print(db_create_schema.dict())

    update_schema = schemas.ParentUpdate.parse_obj(update_dict)
    update_schema.to_orm(db)
    db.commit()

    db_update_schema = schemas.Parent.orm_update(parent_db)
    print(db_update_schema.dict())

Note: with .orm_create() you have to call db.add() before calling db.commit(). With orm_update you give the db session as parameter, and you only have to call db.commit().

Example 2 - Using generated schemas

TODO: Integrate with https://github.com/tiangolo/pydantic-sqlalchemy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy-pydantic-orm-0.1.0.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

sqlalchemy_pydantic_orm-0.1.0-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy-pydantic-orm-0.1.0.tar.gz.

File metadata

  • Download URL: sqlalchemy-pydantic-orm-0.1.0.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.3

File hashes

Hashes for sqlalchemy-pydantic-orm-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0b15bc38eebedf92af044e12707dad7ae19b2eaf6318fbc5a8d64ec3a3f35e1d
MD5 c2b85ce7f3a99d92171b9333f29be5a0
BLAKE2b-256 39292e623cd5620508169abc65b7e188260d0ed6fada8480f89d7fc0ded6d682

See more details on using hashes here.

File details

Details for the file sqlalchemy_pydantic_orm-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: sqlalchemy_pydantic_orm-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.3

File hashes

Hashes for sqlalchemy_pydantic_orm-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0aa423514424964ae89f635089f2f8173ffe804d9f54c120e23ed54c116cef10
MD5 3f989476cbd1c93b4c1254a01bc20a6d
BLAKE2b-256 9be3a589ad5b48d1a2b2775845b1c3f084b30869a444eb2d08b8f30fc1929bb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page