Skip to main content

SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.

Project description

简体中文 | English

SQLAlchemy-Database

SQLAlchemy-Database provides shortcut functions to common database operations for SQLAlchemy ORM.

Pytest codecov Package version Chat on Gitter 229036692

Introduction

  • Support SQLAlchemy and SQLModel,recommend using SQLModel.

Install

pip install sqlalchemy-database

ORM Model

SQLAlchemy Model Sample

import datetime

import sqlalchemy as sa
from sqlalchemy.orm import declarative_base

Base = declarative_base()


class User(Base):
    __tablename__ = "User"
    id = sa.Column(sa.Integer, primary_key=True)
    username = sa.Column(sa.String(30), unique=True, index=True, nullable=False)
    password = sa.Column(sa.String(30), default='')
    create_time = sa.Column(sa.DateTime, default=datetime.datetime.utcnow)

SQLModel Model Sample

import datetime

from sqlmodel import SQLModel, Field


class User(SQLModel, table=True):
    id: int = Field(default=None, primary_key=True, nullable=False)
    username: str = Field(title='username', max_length=30, unique=True, index=True, nullable=False)
    password: str = Field(default='', title='Password')
    create_time: datetime = Field(default_factory=datetime.now, title='Create Time')

AsyncDatabase

Creation Connection

from sqlalchemy_database import AsyncDatabase

# 1.Create an asynchronous database connection
db = AsyncDatabase.create('sqlite+aiosqlite:///amisadmin.db?check_same_thread=False')  # sqlite
# db = AsyncDatabase.create('mysql+aiomysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4')# mysql
# db = AsyncDatabase.create('postgresql+asyncpg://postgres:root@127.0.0.1:5432/amisadmin')# postgresql

Database

Creation Connection

from sqlalchemy_database import Database

# 1.Create a database connection
db = Database.create('sqlite:///amisadmin.db?check_same_thread=False')  # sqlite
# db = Database.create('mysql+pymysql://root:123456@127.0.0.1:3306/amisadmin?charset=utf8mb4') # mysql
# db = Database.create('postgresql://postgres:root@127.0.0.1:5432/amisadmin') # postgresql
# db = Database.create('oracle+cx_oracle://scott:tiger@tnsname') # oracle
# db = Database.create('mssql+pyodbc://scott:tiger@mydsn') # SQL Server

AbcAsyncDatabase

When you are developing a library of tools, your Python program may require a database connection.

But you can't be sure whether the other person personally prefers synchronous or asynchronous connections.

You can use asynchronous shortcut functions with the async_ prefix.

AsyncDatabase and Database both inherit from AbcAsyncDatabase and both implement the usual async_ prefixed asynchronous shortcut functions.

For example: async_execute,async_scalar,async_scalars,async_get,async_delete,async_run_sync.

Remark: The async_ prefix in Database is implemented by executing the corresponding synchronous shortcut in the thread pool.

Asynchronous compatible shortcut functions

from sqlalchemy import insert, select, update, delete
from sqlalchemy_database import AsyncDatabase, Database


async def fast_execute(db: Union[AsyncDatabase, Database]):
    # update
    stmt = update(User).where(User.id == 1).values({'username': 'new_user'})
    result = await db.async_execute(stmt)

    # select
    stmt = select(User).where(User.id == 1)
    user = await db.async_execute(stmt, on_close_pre=lambda r: r.scalar())

    # insert
    stmt = insert(User).values({'username': 'User-6', 'password': 'password-6'})
    result = await db.async_execute(stmt)

    # delete
    stmt = delete(User).where(User.id == 6)
    result = await db.async_execute(stmt)

    # scalar
    user = await db.async_scalar(select(User).where(User.id == 1))

    # scalars
    stmt = select(User)
    result = await db.async_scalars(stmt)

    # get
    user = await db.async_get(User, 1)

    # delete
    user = User(id=1, name='test')
    await db.async_delete(user)

    # run_sync
    await db.async_run_sync(Base.metadata.create_all, is_session=False)

Use dependencies in FastAPI

app = FastAPI()


# AsyncDatabase
@app.get("/user/{id}")
async def get_user(id: int, session: AsyncSession = Depends(db.session_generator)):
    return await session.get(User, id)


# Database
@app.get("/user/{id}")
def get_user(id: int, session: Session = Depends(db.session_generator)):
    return session.get(User, id)

Use middleware in FastAPI

app = FastAPI()

# Database
sync_db = Database.create("sqlite:///amisadmin.db?check_same_thread=False")

app.add_middleware(BaseHTTPMiddleware, dispatch=sync_db.asgi_dispatch)


@app.get("/user/{id}")
def get_user(id: int):
    return sync_db.session.get(User, id)


# AsyncDatabase
async_db = AsyncDatabase.create("sqlite+aiosqlite:///amisadmin.db?check_same_thread=False")

app.add_middleware(BaseHTTPMiddleware, dispatch=async_db.asgi_dispatch)


@app.get("/user/{id}")
async def get_user(id: int):
    return await async_db.session.get(User, id)

Get session object

You can get the session object anywhere, but you need to manage the lifecycle of the session yourself. For example:

  • 1.In FastAPI, you can use middleware or dependencies to get the session object. In the routing function, the method called will automatically get the session object in the context.

  • 2.In the local work unit, you can use the with statement to get the session object. In the with statement, the method called will automatically get a new session object.

graph LR
session[Get session] --> scopefunc{Read context var}
scopefunc -->|None| gSession[Return the global default session]
scopefunc -->|Not a Session object| sSession[Return the scoped session corresponding to the current context variable]
scopefunc -->|Is a Session object| cSession[Return session in the current context variable]

More tutorial documentation

sqlalchemy

SQLAlchemy-Database adds extension functionality to SQLAlchemy.

More features and complicated to use, please refer to the SQLAlchemy documentation.

SQLAlchemy is very powerful and can fulfill almost any complex need you have.

sqlmodel

Recommend you to use SQLModel definition ORM model, please refer to the SQLModel documentation.

SQLModel written by FastAPI author, Perfectly combine SQLAlchemy with Pydantic, and have all their features .

Relevant project

License

According to the Apache2.0 protocol.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlalchemy_database-0.1.0a5.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sqlalchemy_database-0.1.0a5-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file sqlalchemy_database-0.1.0a5.tar.gz.

File metadata

  • Download URL: sqlalchemy_database-0.1.0a5.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.1.5 CPython/3.8.5

File hashes

Hashes for sqlalchemy_database-0.1.0a5.tar.gz
Algorithm Hash digest
SHA256 36fc94266762b915ea217b9bd76a1e5d3e29cc94ce387dac46c34d82eca8ef2f
MD5 471edaefd7aec5a760e94f7400d3ae4e
BLAKE2b-256 c3a13fd0d5a2122ff51f2faa9b79dcacc13e0bfeb971313f53a13b96a8247df0

See more details on using hashes here.

File details

Details for the file sqlalchemy_database-0.1.0a5-py3-none-any.whl.

File metadata

File hashes

Hashes for sqlalchemy_database-0.1.0a5-py3-none-any.whl
Algorithm Hash digest
SHA256 87063bba2ddd3a932e630cf963373f6e3dae6cb9e275fe6aeb0bd159c2174851
MD5 33f6471e4550e861f00e592fb8d9d22c
BLAKE2b-256 48cc886abbe134ae871f2f29ef46a5eed8a4c8edc17af06c231749e4beece3bc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page