Skip to main content

Next-generation data transformation framework

Project description

SQLMesh logo

SQLMesh is a next-generation data transformation framework designed to ship data quickly, efficiently, and without error. Data teams can run and deploy data transformations written in SQL or Python with visibility and control at any size.

It is more than just a dbt alternative.

Architecture Diagram

Core Features

SQLMesh Plan Mode

Get instant SQL impact and context of your changes, both in the CLI and in the SQLMesh VSCode Extension

Virtual Data Environments
  • Create isolated development environments without data warehouse costs
  • Plan / Apply workflow like Terraform to understand potential impact of changes
  • Easy to use CI/CD bot for true blue-green deployments
Efficiency and Testing

Running this command will generate a unit test file in the tests/ folder: test_stg_payments.yaml

Runs a live query to generate the expected output of the model

sqlmesh create_test tcloud_demo.stg_payments --query tcloud_demo.seed_raw_payments "select * from tcloud_demo.seed_raw_payments limit 5"

# run the unit test
sqlmesh test
MODEL (
  name tcloud_demo.stg_payments,
  cron '@daily',
  grain payment_id,
  audits (UNIQUE_VALUES(columns = (
      payment_id
  )), NOT_NULL(columns = (
      payment_id
  )))
);

SELECT
    id AS payment_id,
    order_id,
    payment_method,
    amount / 100 AS amount, /* `amount` is currently stored in cents, so we convert it to dollars */
    'new_column' AS new_column, /* non-breaking change example  */
FROM tcloud_demo.seed_raw_payments
test_stg_payments:
model: tcloud_demo.stg_payments
inputs:
    tcloud_demo.seed_raw_payments:
      - id: 66
        order_id: 58
        payment_method: coupon
        amount: 1800
      - id: 27
        order_id: 24
        payment_method: coupon
        amount: 2600
      - id: 30
        order_id: 25
        payment_method: coupon
        amount: 1600
      - id: 109
        order_id: 95
        payment_method: coupon
        amount: 2400
      - id: 3
        order_id: 3
        payment_method: coupon
        amount: 100
outputs:
    query:
      - payment_id: 66
        order_id: 58
        payment_method: coupon
        amount: 18.0
        new_column: new_column
      - payment_id: 27
        order_id: 24
        payment_method: coupon
        amount: 26.0
        new_column: new_column
      - payment_id: 30
        order_id: 25
        payment_method: coupon
        amount: 16.0
        new_column: new_column
      - payment_id: 109
        order_id: 95
        payment_method: coupon
        amount: 24.0
        new_column: new_column
      - payment_id: 3
        order_id: 3
        payment_method: coupon
        amount: 1.0
        new_column: new_column
  • Never build a table more than once
  • Track what data’s been modified and run only the necessary transformations for incremental models
  • Run unit tests for free and configure automated audits
  • Run table diffs between prod and dev based on tables/views impacted by a change
Level Up Your SQL Write SQL in any dialect and SQLMesh will transpile it to your target SQL dialect on the fly before sending it to the warehouse. Transpile Example
  • Debug transformation errors before you run them in your warehouse in 10+ different SQL dialects
  • Definitions using simply SQL (no need for redundant and confusing Jinja + YAML)
  • See impact of changes before you run them in your warehouse with column-level lineage

For more information, check out the website and documentation.

Getting Started

Install SQLMesh through pypi by running:

mkdir sqlmesh-example
cd sqlmesh-example
python -m venv .venv
source .venv/bin/activate
pip install 'sqlmesh[lsp]' # install the sqlmesh package with extensions to work with VSCode
source .venv/bin/activate # reactivate the venv to ensure you're using the right installation
sqlmesh init # follow the prompts to get started (choose DuckDB)

Note: You may need to run python3 or pip3 instead of python or pip, depending on your python installation.

Windows Installation
mkdir sqlmesh-example
cd sqlmesh-example
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install 'sqlmesh[lsp]' # install the sqlmesh package with extensions to work with VSCode
.\.venv\Scripts\Activate.ps1 # reactivate the venv to ensure you're using the right installation
sqlmesh init # follow the prompts to get started (choose DuckDB)

Follow the quickstart guide to learn how to use SQLMesh. You already have a head start!

Follow the crash course to learn the core movesets and use the easy to reference cheat sheet.

Follow this example to learn how to use SQLMesh in a full walkthrough.

Join Our Community

Together, we want to build data transformation without the waste. Connect with us in the following ways:

Contribution

Contributions in the form of issues or pull requests (from fork) are greatly appreciated.

Read more on how to contribute to SQLMesh open source.

Watch this video walkthrough to see how our team contributes a feature to SQLMesh.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqlmesh-0.230.0.tar.gz (13.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sqlmesh-0.230.0-py3-none-any.whl (5.6 MB view details)

Uploaded Python 3

File details

Details for the file sqlmesh-0.230.0.tar.gz.

File metadata

  • Download URL: sqlmesh-0.230.0.tar.gz
  • Upload date:
  • Size: 13.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for sqlmesh-0.230.0.tar.gz
Algorithm Hash digest
SHA256 34b337dab44ff8d7e37e82d2a0abf7246717f594568c320572bdfe1e8d9a3279
MD5 97bcd8a65dc6a5df488c0072dfd48898
BLAKE2b-256 742b3ff6aa91ffd15716a0892a7ed084fe2db8c0f10328df68b929933b2e7d14

See more details on using hashes here.

File details

Details for the file sqlmesh-0.230.0-py3-none-any.whl.

File metadata

  • Download URL: sqlmesh-0.230.0-py3-none-any.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for sqlmesh-0.230.0-py3-none-any.whl
Algorithm Hash digest
SHA256 de80bbf1eaa75c2310678976179285e6aa7c3595f4c06a77c2a793715e72b7a5
MD5 b2e90aee5560a0405e329919594deb4f
BLAKE2b-256 bafa1a71919a5c0d0b7e67c046ec163998d2e360ce94a50956f66f3e0e4dedac

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page