Skip to main content

SSMS is a package collecting simulators and training data generators for cognitive science, neuroscience, and approximate bayesian computation

Project description

SSMS (Sequential Sampling Model Simulators)

DOI PyPI PyPI_dl Ruff License: MIT codecov

Python Package to collect simulators for Sequential Sampling Models.

Find the package documentation here.

Quick Start

The ssms package serves two purposes.

  1. Easy access to fast simulators of sequential sampling models
  2. Support infrastructure to construct training data for various approaches to likelihood / posterior amortization

A number of tutorial notebooks are available under the /notebooks directory.

Installation

pip install ssm-simulators

[!NOTE] Building from source or developing this package requires a C compiler (such as GCC). On Linux, you can install GCC with:

sudo apt-get install build-essential

Most users installing from PyPI wheels do not need to install GCC.

Command Line Interface

The package exposes a command-line tool, generate, for creating training data from a YAML configuration file.

generate --config-path <path/to/config.yaml> --output <output/directory> [--log-level INFO]
  • --config-path: Path to your YAML configuration file (required).
  • --output: Directory where generated data will be saved (required).
  • --n-files: (Optional) Number of data files to generate. Default is 1 file.
  • --log-level: (Optional) Set the logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL). Default is WARNING.

Below is a sample YAML configuration you can use with the generate command:

MODEL: 'ddm'
N_SAMPLES: 2000
N_PARAMETER_SETS: 100
DELTA_T: 0.001
N_TRAINING_SAMPLES_BY_PARAMETER_SET: 200
N_SUBRUNS: 20
GENERATOR_APPROACH: 'lan'

Configuration file parameter details follow.

Option Definition
MODEL The type of model you want to simulate
N_SAMPLES Number of samples a simulation run should entail for a given parameter set
N_PARAMETER_SETS Number of parameter vectors that are used for training
DELTA_T Time discretization step used in numerical simulation of the model. Interval between updates of evidence-accumulation.
N_TRAINING_SAMPLES_BY_PARAMETER_SET Number of times the kernal density estimate (KDE) is evaluated after creating the KDE from simulations of each set of model parameters.
N_SUBRUNS Number of repetitions of each call to generate data
GENERATOR_APPROACH Type of generator used to generate data

To make your own configuration file, you can copy the example above into a new .yaml file and modify it with your preferences.

If you are using uv (see below), you can use the uv run command to run generate from the command line

This will generate training data according to your configuration and save it in the specified output directory.

Tutorial

Check the basic tutorial here.

Advanced: Dependency Management with uv

We use uv for fast and efficient dependency management. To get started:

  1. Install uv:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Install dependencies (including development):
uv sync --all-groups  # Installs all dependency groups

Cite ssm-simulators

Please use the this DOI to cite ssm-simulators: https://doi.org/10.5281/zenodo.17156205

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssm_simulators-0.11.3.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

ssm_simulators-0.11.3-cp312-cp312-win_amd64.whl (336.3 kB view details)

Uploaded CPython 3.12Windows x86-64

ssm_simulators-0.11.3-cp312-cp312-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

ssm_simulators-0.11.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

ssm_simulators-0.11.3-cp312-cp312-macosx_11_0_arm64.whl (378.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

ssm_simulators-0.11.3-cp312-cp312-macosx_10_13_x86_64.whl (413.0 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

ssm_simulators-0.11.3-cp311-cp311-win_amd64.whl (357.5 kB view details)

Uploaded CPython 3.11Windows x86-64

ssm_simulators-0.11.3-cp311-cp311-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

ssm_simulators-0.11.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

ssm_simulators-0.11.3-cp311-cp311-macosx_11_0_arm64.whl (395.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

ssm_simulators-0.11.3-cp311-cp311-macosx_10_9_x86_64.whl (444.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

ssm_simulators-0.11.3-cp310-cp310-win_amd64.whl (355.9 kB view details)

Uploaded CPython 3.10Windows x86-64

ssm_simulators-0.11.3-cp310-cp310-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

ssm_simulators-0.11.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

ssm_simulators-0.11.3-cp310-cp310-macosx_11_0_arm64.whl (388.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

ssm_simulators-0.11.3-cp310-cp310-macosx_10_9_x86_64.whl (441.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file ssm_simulators-0.11.3.tar.gz.

File metadata

  • Download URL: ssm_simulators-0.11.3.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for ssm_simulators-0.11.3.tar.gz
Algorithm Hash digest
SHA256 174f21c73f17c33c6ed08fd8b8a3bfecc5de90f2c228a316196468fca6838daf
MD5 b1b12c929a7bc97f66320953b098f96a
BLAKE2b-256 f7589eec6b5e8c7ef262a74c935cda75d536044c799a658bbf47add08b0fc0b0

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6145b1dd9ea4bc4e6861207f76f1678b7c67fc949f979cf10cf504de2726f2be
MD5 2330d528b9cb5f1fe479273289878bd6
BLAKE2b-256 66ff50694268001c1a16ab958bc10587808b01ab136e40c231becf73e35e9fae

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1127821226e6485f2c4a480851553aa8a0c0e538e467d0ecb349c1adeb36ddbc
MD5 80dc3daddeba2aa9a2fdb42c01bf2b37
BLAKE2b-256 bca71e2da00c7bf80b93c23459bb8fc40a15f52847e8a0597d1a3d50703653d8

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 01cbd48a8003fe1fe64abb97e26777fde3b1b2d0dda93c5a1703a5a1d3854363
MD5 5782dab1ed916abfc343baf219d3ed9b
BLAKE2b-256 865e6430ef4e9de5572cb71a69966eb26da9316796c118d7d2a8731c56c176f2

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 273249c88672a58349298cede95872aaa3864031d884624a5d717d9c2a99e433
MD5 aee1f64883de6b948b4b5f90cc27c459
BLAKE2b-256 5034870ac21f23cab9978154d757f80764996fb464c3084b36d74192b204f1e0

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7d16ce7875c4bc62b4a95e935a6e896fca49c8be9b7b186aa83726f5ccfd9878
MD5 aba1b712a9e84e566f595d1a9a99cd39
BLAKE2b-256 8eb02462e970f0a2ebf64638969bb1b0dac718e448d35e51e0ef3b2272388408

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 012b2bb3844efe0647ad21458aad5fbc01dfe0d761852f8761bf3d910ef7e90c
MD5 f028a4a1a3f09cc264ea43f22e98ed94
BLAKE2b-256 6d0d91a4bc29231c86041870f0503e0c891c3ae9d67d6f7fe155b39a43604241

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 66c0b8161398c923996c5df8440c12ecce876cfc3eece2a7abe47de02839add1
MD5 6ab2fbba9e084484ab381a93ec6cedc2
BLAKE2b-256 ee5d8d3f50fe07c81668835376f584dd40430e9d9151e85c1636bcc06df2944f

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e140fe8c7ae6b1a4238a0f695045ab5e50ba8803f6845be3bf810828a18f6533
MD5 0409bd4a7e91a6df99ef24db81c70d22
BLAKE2b-256 0b1c56ffcfa63912e9a459fc59d6c6a8060d0db42a848434d010b8c88adeb261

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f045c079fc39f3f4ead71d62febcb9dac447976c10745fd3d37e46b60bb7576
MD5 5765ac8410e6407ca0e390d01cf76155
BLAKE2b-256 aa20bc3f3bd5d54a9da366f04b782e27c6ed99cfcebde556a209bd77e11d6e9a

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 499e81a2ecd9f39bf80a1faa79d3434cb1f95bede0bea980448c1b1a868acdbc
MD5 e9bf17b66cbd6a9b76d49226589be643
BLAKE2b-256 8a19681f895fe5c6f7879f2aa77a28b0a57eb3af35ec580b89abe71f3da48cd7

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5a1ac123915a47ac23a67330f69303f9b9d3732836afacfb1beb03ef62c96d6c
MD5 8d7e7257011bf82f5bcf42b5e24b3d67
BLAKE2b-256 aeecc6722fd7019c368c35d5f00727b9407fab72fdaba2c01bf6ad5a4ab792a5

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3b91f359c1d0cd9d7393aca3279c7e848f8a235f2a427c761c9371d135729b44
MD5 33033c6cae7a50c932dd8d9714d8865d
BLAKE2b-256 996a45b42847827cb019c363c88f101655c9619e9c475ef1a66c9707f87096c3

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 01667475d4d004b191dd4ef59dfcbc41b274db9ebabfb7b9d20aa2aa94877711
MD5 9c0e410a5a5cdacd61e899f5fce34c0e
BLAKE2b-256 a32d791d8bb4c4e391a75c5ed5ef7bd86681bcaeaf2c201391c919593c6856e2

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 39dc4cac95f80c7d215eb207339db7a11cd53fe316644cca549ca986897b47c8
MD5 fa9c261678fa64ac32daacbb4f1d2bff
BLAKE2b-256 f0d87b103e282e5fc8544957a1607c8c832744b85ec3ee6059ee9a13d03fff60

See more details on using hashes here.

File details

Details for the file ssm_simulators-0.11.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ssm_simulators-0.11.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 363d9ef6e51ddcdf3addb2a17ae7c83f53889df64b4750dee8bd0d1c9ac34916
MD5 1b9de3fc33c605b53b77e2d5cde1922f
BLAKE2b-256 3476a9def40678b532c81ee10073fb14740d06fe89314d244f53a755f2b4d0d3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page