Skip to main content

Single sample pathway analysis tools for omics data

Project description

sspa

sspa_logo

DOI

Single sample pathway analysis tools for omics data

Full walkthrough notebook available on Google Colab:

Open In Colab

Documentation is available on our Read the Docs page

Quickstart

pip install sspa

Load Reactome pathways

reactome_pathways  = sspa.process_reactome(organism="Homo sapiens")

Load some example metabolomics data in the form of a pandas DataFrame:

covid_data_processed = sspa.load_example_data(omicstype="metabolomics", processed=True)

Generate pathway scores using kPCA method

kpca_scores = sspa.sspa_kpca(covid_data_processed, reactome_pathways)

Loading pathways

# Pre-loaded pathways
# Reactome v78
reactome_pathways  = sspa.process_reactome(organism="Homo sapiens")

# KEGG v98
kegg_human_pathways  = sspa.process_kegg(organism="hsa")

Load a custom GMT file (extension .gmt or .csv)

custom_pathways = sspa.process_gmt("wikipathways-20220310-gmt-Homo_sapiens.gmt")

Download latest version of pathways

# download KEGG latest
kegg_mouse_latest = sspa.process_kegg("mmu", download_latest=True, filepath=".")

# download Reactome latest
reactome_mouse_latest = sspa.process_reactome("Mus musculus", download_latest=True, filepath=".")

Identifier harmonization

# download the conversion table
compound_names = processed_data.columns.tolist()
conversion_table = sspa.identifier_conversion(input_type="name", compound_list=compound_names)

# map the identifiers to your dataset
processed_data_mapped = sspa.map_identifiers(conversion_table, output_id_type="ChEBI", matrix=processed_data)

Conventional pathway analysis

ORA

ora = sspa.sspa_ora(processed_data_mapped, covid_data["Group"], reactome_pathways, 0.05, custom_background=None)

# perform ORA 
ora_res = ora.over_representation_analysis()

# get t-test results
ora.ttest_res

# obtain list of differential molecules input to ORA
ora.DA_molecules

GSEA

sspa.sspa_fgsea(processed_data_mapped, covid_data['Group'], reactome_pathways)

Single sample pathway analysis methods

# ssclustPA
ssclustpa_proj_res = sspa.sspa_cluster(processed_data_mapped, reactome_pathways)

# kPCA
kpca_scores = sspa.sspa_kpca(processed_data_mapped, reactome_pathways)

# z-score
zscore_res = sspa.sspa_zscore(processed_data_mapped, reactome_pathways)

# SVD (PLAGE)
svd_res = sspa.sspa_svd(processed_data_mapped, reactome_pathways)

# GSVA
gsva_res = sspa.sspa_gsva(processed_data_mapped, reactome_pathways)

License

GNU GPL 3.0

Citing us

DOI

If you found this package useful, please consider citing us:

ssPA package

@article{Wieder22a,
   author = {Cecilia Wieder and Nathalie Poupin and Clément Frainay and Florence Vinson and Juliette Cooke and Rachel PJ Lai and Jacob G Bundy and Fabien Jourdan and Timothy MD Ebbels},
   doi = {10.5281/ZENODO.6959120},
   month = {8},
   title = {cwieder/py-ssPA: v1.0.4},
   url = {https://zenodo.org/record/6959120},
   year = {2022},
}

Single-sample pathway analysis in metabolomics

@article{Wieder2022,
   author = {Cecilia Wieder and Rachel P J Lai and Timothy Ebbels},
   doi = {10.1101/2022.04.11.487976},
   journal = {bioRxiv},
   month = {4},
   pages = {2022.04.11.487976},
   publisher = {Cold Spring Harbor Laboratory},
   title = {Single sample pathway analysis in metabolomics : performance evaluation and application},
   url = {https://www.biorxiv.org/content/10.1101/2022.04.11.487976v1 https://www.biorxiv.org/content/10.1101/2022.04.11.487976v1.abstract},
   year = {2022},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sspa-0.1.4.tar.gz (8.0 MB view details)

Uploaded Source

Built Distribution

sspa-0.1.4-py3-none-any.whl (8.0 MB view details)

Uploaded Python 3

File details

Details for the file sspa-0.1.4.tar.gz.

File metadata

  • Download URL: sspa-0.1.4.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.5

File hashes

Hashes for sspa-0.1.4.tar.gz
Algorithm Hash digest
SHA256 e2bbbd7ccad1b3c44da6a71b62c32fda947068c785a5d96d3941d5903c47fd6e
MD5 64cec4f5313a7246edeaaafe5f1df25e
BLAKE2b-256 0638cf8a4422b3d925bac9691eb407a51f004d12aa9829f100632772b31bdf96

See more details on using hashes here.

File details

Details for the file sspa-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: sspa-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 8.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.5

File hashes

Hashes for sspa-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7c6de53b1b710946b436f5c87a77326129ea6ee52566f84c60f90c1c499caf51
MD5 0f0a6c0d635f684cba54f435921c41b3
BLAKE2b-256 7a92d8633951f4cbb88ecdccfaab19c2658537ec3276f8e3ed97511f7aed0bcd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page