Skip to main content

STAM is a library for dealing with standoff annotations on text, this is the python binding.

Project description

stam logo

Docs PyPI PyPI GitHub build GitHub release Project Status: Active – The project has reached a stable, usable state and is being actively developed. Technology Readiness Level 7/9 - Release Candidate - Technology ready enough and in initial use by end-users in intended scholarly environments. Further validation in progress.

STAM Python binding

STAM is a data model for stand-off text annotation and described in detail here. This is a python library (to be more specific; a python binding written in Rust) to work with the model.

What can you do with this library?

  • Keep, build and manipulate an efficient in-memory store of texts and annotations on texts
  • Search in annotations, data and text:
    • Search annotations by data, textual content, relations between text fragments (overlap, embedding, adjacency, etc),
    • Search in text (incl. via regular expressions) and find annotations targeting found text selections.
    • Search in data (set,key,value) and find annotations that use the data.
    • Elementary text operations with regard for text offsets (splitting text on a delimiter, stripping text).
    • Convert between different kind of offsets (absolute, relative to other structures, UTF-8 bytes vs unicode codepoints, etc)
  • Read and write resources and annotations from/to STAM JSON, STAM CSV, or an optimised binary (CBOR) representation
    • The underlying STAM model aims to be clear and simple. It is flexible and does not commit to any vocabulary or annotation paradigm other than stand-off annotation.

This STAM library is intended as a foundation upon which further applications can be built that deal with stand-off annotations on text. We implement all the low-level logic in dealing this so you no longer have to and can focus on your actual application.

Installation

$ pip install stam

Or if you feel adventurous and have the necessary build-time dependencies installed (Rust), you can try the latest development release from Github:

$ pip install git+https://github.com/annotation/stam-python

Documentation

Usage

Import the library

import stam

Loading a STAM JSON (or CSV) file containing an annotation store:

store = stam.AnnotationStore(file="example.stam.json")

The annotation store is your workspace, it holds all resources, annotation sets (i.e. keys and annotation data) and of course the actual annotations. It is a memory-based store and you can put as much as you like into it (as long as it fits in memory).

You can optionally pass configuration parameters upon loading a store, as follows:

store = stam.AnnotationStore(file="example.stam.json", config={"debug": True})

Once loaded, you can retrieve anything by its public ID:

annotation = store.annotation("my-annotation")
resource = store.resource("my-resource")
dataset = store.dataset("my-annotationset")
key = dataset.key("my-key")
data = dataset.annotationdata("my-data")

You can also iterate through all annotations in the store, and output a simple tab separated format:

for annotation in store.annotations():
    # get the text to which this annotation refers (if any)
    try:
        text = str(annotation)
    except stam.StamError:
        text = "n/a"
    for data in annotation:
        print("\t".join(( annotation.id(), data.key().id(), str(data.value()), text)))

Adding a resource:

resource = store.add_resource(filename="my-text.txt")

Create a store and annotations from scratch:

from stam import AnnotationStore, Selector, AnnotationDataBuilder

store = AnnotationStore(id="test")
resource = store.add_resource(id="testres", text="Hello world")
store.annotate(id="A1", 
                target=Selector.textselector(resource, Offset.simple(6,11)),
                data={ "id": "D1", "key": "pos", "value": "noun", "set": "testdataset"})

In the above example, the AnnotationDataSet , DataKey and AnnotationData are created on-the-fly. You can also create them explicitly within the set first, as shown in the next snippet, resulting in the exact same store:

store = AnnotationStore(id="test")
resource = store.add_resource(id="testres", text="Hello world")
dataset = store.add_dataset(id="testdataset")
dataset.add_key("pos")
data = dataset.add_data("pos","noun","D1")
store.annotate(id="A1", 
    target=Selector.textselector(resource, Offset.simple(6,11)),
    data=data)

Providing the full data dictionary as in the earlier example would have also worked fine, with the same end result, but would be less performant than passing an AnnotationData instance directly. The implementation will always ensure any already existing AnnotationData will be reused if possible, as not duplicating data is one of the core characteristics of the STAM model.

You can serialize the entire annotation store (including all sets and annotations) to a STAM JSON file:

store.set_filename("example.stam.json")
store.save()

For more documentation, please read: STAM Tutorial: Standoff Text Annotation for Pythonistas.

Differences between the rust library and python library and performance considerations

Although this Python binding builds on the Rust library, the API it exposes differs in certain aspects to make it more pythonic and easier to work with. This results in a higher-level API that hides some of the lower-level details that are present in the Rust library. This approach does come at the cost of causing some additional runtime overhead.

The Rust methods will often return iterators, references or handles whenever they can, moreover it will do so safely. The Python API is often forced to make a local copy. For iterators we often decide to let the entire underlying Rust iterator run its course and then return the result as a whole as a tuple, rather than return a Python generator. Here you gain some speed at the cost of some memory.

Probably needless to say, but using Rust directly will always be more performant than using this Python binding. However, using this Python binding should still be way more performant than if the whole thing were implemented in native Python. The trick is in letting the binding work for you as much as possible, use higher-level methods whenever they are available rather than implementing your logic in Python.

Acknowledgements

This work is conducted at the KNAW Humanities Cluster's Digital Infrastructure department, and funded by the CLARIAH project (CLARIAH-PLUS, NWO grant 184.034.023) as part of the FAIR Annotations track.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stam-0.10.2.tar.gz (89.0 kB view details)

Uploaded Source

Built Distributions

stam-0.10.2-cp313-cp313-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

stam-0.10.2-cp313-cp313-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

stam-0.10.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp313-cp313-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

stam-0.10.2-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12Windows x86-64

stam-0.10.2-cp312-cp312-win32.whl (2.2 MB view details)

Uploaded CPython 3.12Windows x86

stam-0.10.2-cp312-cp312-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

stam-0.10.2-cp312-cp312-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

stam-0.10.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp312-cp312-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

stam-0.10.2-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11Windows x86-64

stam-0.10.2-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11Windows x86

stam-0.10.2-cp311-cp311-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

stam-0.10.2-cp311-cp311-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

stam-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp311-cp311-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

stam-0.10.2-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10Windows x86-64

stam-0.10.2-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10Windows x86

stam-0.10.2-cp310-cp310-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

stam-0.10.2-cp310-cp310-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

stam-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp310-cp310-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

stam-0.10.2-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9Windows x86-64

stam-0.10.2-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9Windows x86

stam-0.10.2-cp39-cp39-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

stam-0.10.2-cp39-cp39-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

stam-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp39-cp39-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

stam-0.10.2-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8Windows x86-64

stam-0.10.2-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8Windows x86

stam-0.10.2-cp38-cp38-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

stam-0.10.2-cp38-cp38-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARM64

stam-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

stam-0.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

stam-0.10.2-cp38-cp38-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8macOS 10.12+ x86-64

stam-0.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ x86-64

stam-0.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl (2.9 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ ARM64

stam-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

stam-0.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

stam-0.10.2-cp37-cp37m-macosx_10_12_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7mmacOS 10.12+ x86-64

File details

Details for the file stam-0.10.2.tar.gz.

File metadata

  • Download URL: stam-0.10.2.tar.gz
  • Upload date:
  • Size: 89.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2.tar.gz
Algorithm Hash digest
SHA256 8f1e2b9c2ccfc122185f897f9e2ed681a52cf74e833bf8fe9ffa3e3b0d5b1cbe
MD5 46e123bf075dbf36a2bffa498cb457e7
BLAKE2b-256 cf4f9a4170224a0d7ab72be08d0110fbb4224ed47a4cab91245974a8fcd3dcce

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e693efe3f8e0db651f21fd9ba6699d0ba8176a1172f70e1e9a32685591a588d7
MD5 9a60facd3dfcee9c5503b8dee6b63be5
BLAKE2b-256 f2e8276cefd2d69014ca1b3f5569d3b4d802d267df296fadc7a719988daedf3d

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8de28ed2118a1486cffd2bfe4431df5a9550d456e122c308c0c89e074fb0ab64
MD5 34e397b4500865ff3c62ef6f5745a962
BLAKE2b-256 8387b5939a4e2c4b98d52a8e3210cddb3268cc14ef66b8c9297993777eb0f2da

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1aa3b97859709ab6736b4599bdef24d574623ca1e54d922ba9b30993862579b
MD5 cf4cd18ce74b52cfd80212fae55cbf48
BLAKE2b-256 16c777220c030b1278a6ab9c10cab24df40d49d4800d4e211e8bb33b84b2132a

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f2535f13ea5df00486f8811282a4d57ae208e64fd5a14846c5c5a2831e65503
MD5 dffbdc6a35004934893ff6b92c90f1f4
BLAKE2b-256 085e3ee3573c82fa482cfbfa4df37a5a48760f85209ba34d1018d2ea2de62c65

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 125903c0935d346b9bbdd943d1ce6ee86f5f1df79cfb368a26e8088ecc795b45
MD5 8292c602a597a7c98634455541c5ff20
BLAKE2b-256 3201647e2381c0ad3026e64e47458ff3ccc2a3eafe491588be99f11b8f9f45b3

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4715b5aaa3cd93ea1e2912d5005306b9e7e2a3cf909f76ed1caabb009899166a
MD5 007f63e4367fb55966927fd8dd688427
BLAKE2b-256 e8d525fe24a5d7f033da126c5739ff6a152759142f7b5a3ee045e3fb1edc81e4

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: stam-0.10.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7319e32727ae1d19d28013ec3dd5f1595499b13db00e84ac148d2499a6034a03
MD5 89fb11464b1159ac0ca61af9081c8bb5
BLAKE2b-256 c0d773e5061911a8d571bb93ba6b73ebd7e1dd20b70b28733ae6d0baa49a6ca4

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 66296057b79a7fd061f7fa7f018a94a4f521c2a1979baa4fb645e9e0d01fae77
MD5 c6f2dadfb712df4299485a4c78f83545
BLAKE2b-256 3c37e1b8058717a0442c780d56cf914126b3360269b1e9b43f91593219626323

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 806cca264662b302e1dd1d8518f81f801055b6363afe65ed6b13c4e41906c34a
MD5 baad306b47815d3e8e6878c792a55dfd
BLAKE2b-256 d80dc9189a88c4b545044fa9ca58773556d3a68bd97a86e97ef0f812d9c8fbd0

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d47535392236e8b42f0c72b6df6e0838f8029cbf736011cd99a64fb5ef9d34c7
MD5 4d81d5476a6468f9b4f067e015b9c764
BLAKE2b-256 2e039cad6fc6159aeb39dca5cd4eebdbbfb5f75dacd6f65a0e24ef25bb369383

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c23272aebbc02a7a8149ba1c9a1b95d38b4aa4d9cb7d78a7d63a8430c78260ca
MD5 e1c18728dd8c950f180e71c15d4b0b32
BLAKE2b-256 a9d3caea73260de948b36e70fb81c3ee65b9f39a796a73486c5737d47d39f1ab

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 49033b20178e46312769862d678fe425b41096a1d496f1dafb14507d2d8c6648
MD5 ff4a581cc9ed5890bac61e9038699a97
BLAKE2b-256 9c8f2fb8cfb0650cff6e0b83010398765a40372602bc71cd526ff3e126acca06

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4e707c4924af83ebcb4114b1f04f34ac3390f392d0d6fc89edc04682accb882c
MD5 55c0676b2b1cb0bb5272198e9f20b7e7
BLAKE2b-256 4bd6fb9c7054b4ad8ec09777cb888981fe564b18322f4d7949efe1f5ff342239

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: stam-0.10.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c9d81d6abe6014eac8d6ad2cac513e8a2dc4f3ef1152fc742bf5e7af2c9dcb74
MD5 3e177761c4e93389eb1f3fb03387b997
BLAKE2b-256 631ef9ddbfea4281eee76ca7a4575ac6b00c3cdc51dddaafed0ab0ee8d9fa0ee

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 52da837edb17831085142cd2309b2da8652c652a0da7b4156676d40715be21d7
MD5 b10c8c441ad66ec6760d05197000a233
BLAKE2b-256 3b6456b1e3adb83c86875d547be268af8b186a3946fe52c0fcac405d6375b47e

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e208353f12a0d03aa8ad534b6f31c640a619ea9714a99c62ce75fe3b14d6bf43
MD5 f10786498aea2f667db166fe75ec8900
BLAKE2b-256 697f8b9bcd8536ea30d8a5d44163b077c11566521e33da993803e681fc3955bf

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a18d2c996259b552683a348f8beaa8160098588685010c4462f8c05ea03e26d2
MD5 fde63085c4df5631cb9a998a37392545
BLAKE2b-256 68c667e2817e342dd9a7a4ad36ed19b304a2f04baa7ca467ee1887b150b464ad

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d9ca7d8df662bf8ec418bb7f03deef527bb26c103dd4781b38aa57addb26f6ea
MD5 2ba4de0acc7eafc6410bed479bb543e8
BLAKE2b-256 4519c32df0896de8dfabad4c8cb094e33b07655fde76e35f1a6d7aa623877d75

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f2feea84cdead777b0cda6a49d68de3e78bd1f6f2f4e6e38f543981672f6d5de
MD5 483b64ec76d56f245e0d3d5140d54011
BLAKE2b-256 e77e510263e398eec3cd67004d728aefeea6bc15a363b4d3084f603342dee367

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 add28203d801d86b34396d646e32c84363e34b5680e13c4fc3b0fe62157be008
MD5 0af4ee24cb2e5027b3ca3972f1f37949
BLAKE2b-256 0f65eec0c12c7a0e1bd724ef124ef18d350bccbb593c89959b0d58781f868f40

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: stam-0.10.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ae885faea2be37ba5c154aec61d0b45b4a87bc0f2aa76519e651c6c8434f1d44
MD5 1ec72039f0a0665e0114f88b4fd988fd
BLAKE2b-256 518e5c2e91b70ecb3b74c7a6411f120472cb2177d71b75674c3a3d3063a352a4

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1954dbafb4ffd73344c3f5845dff3ec32c022664d4ad4c7b4db35e9f66461938
MD5 4df4f35d55977633a1ba626197afe521
BLAKE2b-256 18f407f6eb05304dd29c3679ac053e8a4ce62ea3c6b1ed1e6c77dd1ccb3d9026

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ba58a0ee6a345a8e3c4315b14625ad106c9e10e2db3fbdc5115baef18c602bff
MD5 e0259293211e498e43614510086066ba
BLAKE2b-256 439ae954ecb25055bf9eadaaf1c81dfb764cd479a5333f43f38ed2fd24cb159a

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 139f75176e450836dd32ad113f47484e733e77f8593c84c4aa4eb60d9d5f2332
MD5 ba9cc9c708a3d81372c1d6d84d4d4dbe
BLAKE2b-256 a518aa95552705128d21af5d71c6b470220d032cb311cf88385163440016f565

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79040a64d6c4da42a9b1f13436a489459e7bee76e21f20bd0ca02b3ff37d3110
MD5 7dfbc9dd7a843a20814308f74dd0efc1
BLAKE2b-256 f3cce9f14877a80f63660202be201ae69397e054a1ab68e97fa58b72f7d74503

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a81bd6bc2c0b694b5b4168508f6cfd07c17d8e8eabefe24ef96c58dd36556f09
MD5 05d53fc0aea366467e7663130de36e31
BLAKE2b-256 56a7ddccbd4dbb41698e356e13b015731c032362515ad1ba9688a3da8b17686d

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4675e2e8051788033948aae539105b8892075ba31f8ba018b338ee46edb7b207
MD5 fe5215ffc6be9e673856d692cd8653a9
BLAKE2b-256 7a8c1204250fb96a7bbb0b089bb64e6738e4975d122380c269f3df8704bf1874

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: stam-0.10.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3913b0e84db4ffe4d85fd75e644b04c025befd86895a9e0b17e46fbd092957d3
MD5 a91e65a1afda731f2d7055544959db7d
BLAKE2b-256 8f848df93292322a6841b95b8f4aaac68a3e3c6a2c9c279858c53420af5403c0

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 67f551cba6fe96777c732b9f38c61a76642d6111cc8ad628c351fe251e40b9f8
MD5 047893ff3817cb04f8fee246ced5f43d
BLAKE2b-256 8d9bf3d641e11258689b1937692eadebdcb94cda32c61e283be1cc274a183435

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2aef1aa98ae598b9e8c7eb942fee21fc551d145868ea9d0a8989942e4d1371de
MD5 a7d8fc5cdb7e403a65e14f5fcdeba715
BLAKE2b-256 bf15c5a5e2553def22b03e957aa1bbcd32bb4fc374cd04b118c5fc4cbffc88b5

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38aeea8c5e7151b3165a2e7590d4543a842372d40c873c56ef880145cdf3e459
MD5 e91e91d49f9fcce3efb8c7999159c807
BLAKE2b-256 a6f6733bbf2631b92e65718fc93e674c098b78a1678289871c2d6d1796d065b9

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be1a7a232b050c512bef42955d09e37b0fd01e2676460751d37ecba6b3b73241
MD5 b5e943a46cce86184d2341288300add1
BLAKE2b-256 4ca6fa6fef136eeb41d96ca6ce1768d65ee756f48534dbce207470463b529c39

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f23074bc04faef3771547fae82efc91889f4d6b55336dfcc81193859db967233
MD5 ab05d9d1f88469df158ddbcb12d1926f
BLAKE2b-256 190a6a0b8fa26a2bb6740b96d6fea717ae153370d2fd84c5a41e4aa54d9d12a3

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: stam-0.10.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4c5462ea5a2542a5eba0fcdaba86255cca8bcdc4b85af35db774c3685db05cc1
MD5 a538b6d3bd74b9b80d71d7675cf74dd0
BLAKE2b-256 02949341c03dd200ecffeb9ed7605be97e88396225d08a2a763407d4aa145199

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: stam-0.10.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for stam-0.10.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2ffcdb6b0eb16de88000ff1cf913e659fc51af396b2d08eeb731b32518773011
MD5 fe1a3b98923572a2491cbf6f25121cb8
BLAKE2b-256 ef2dcbc44b5319c46cb0960b3738aee0ce9a4a2df656029d33e5147f60ad4979

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 13f1dbe2cdcd57944616ee5a10fe23dbba24d8c5b6e9d2ec66294d96d7ec5936
MD5 93353865c6e80822b4134821b15c2db4
BLAKE2b-256 3976a7e0d0b31e32e5329e0499927202e2df7b49f554d630e20680c835a3ad8a

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c43009a597ab4e2b1740b29728324a64c67256c9009cb481675a10c40229cedb
MD5 2689fe38e8a13e2ae02b039729236d67
BLAKE2b-256 ae4e977486a464d606abbe8e79b00c9d048b94bc1728a9fd302c677764b162ff

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a0ca393bb1a48cdc9695f7aeb65153264fe5db06906abe791d772191f06fc0b
MD5 256822896501134838f75a526075ab63
BLAKE2b-256 90a8e64b57cfc73113d1fbd988b3ba6f2e5783e8804de13f9f5e790b6833b9c0

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1eedf999493c7c2e28eb195eefbc4ce7af0ca691f5da3da623696997d106ad88
MD5 0f924c54d5b689267b80df633ad9e745
BLAKE2b-256 3c73e19364c9f43615265d74245aabc0bffa23921e002e72f45f87ddfb4a62fa

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2bd377f01337299c1330a376cd291abedc9686e07549ea75022c67c4380f11f8
MD5 d2944719eff742146d319d5c9a1cb217
BLAKE2b-256 701da1ba8cc15417a08eaffa77c875b825baec32c2af05dddc18458308b92ffe

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 81c41738bbc50c786b687534db425db17de780979347870a8a99cee762328547
MD5 d95db4aa467a9152c6d7468cab2ef192
BLAKE2b-256 e547c0663fbdca0d025d692e024f6e03d5a6e6b8cd954ace7a74c27ff379af64

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 cf1bcd3fb39c887172138aa67ed1d2325cd67cc7d250c79943a9cbaf186638bf
MD5 a0723465e909c83d0d3f0fcf28379415
BLAKE2b-256 bd48af3bc1bb03c50bda76ada0454d19d2d2d9a17aeecd2af9e99d6e19a1f6cc

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c30967d511d3af14890a6b444a0d0b0d3d4afa69bbedfae1b4f4ddc004d6537b
MD5 7fd640d89f7ded6c7dc2f4172a97896f
BLAKE2b-256 ce71038f69913a8390601a260ba1c223be2cbb4c5486ccc6ddc8aea1e12fcb35

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9b3cc30e15d876e0be87fb212f1a91d299d5bb5ddf366efa4b604d10fbaad5e
MD5 fedfc6d7eb98371d851eebe2189ce735
BLAKE2b-256 f51d9f1740a2a94be155103d4132b5d119caafa6cb6fc37123ba01bf16164d86

See more details on using hashes here.

File details

Details for the file stam-0.10.2-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for stam-0.10.2-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8864922c6cf2c33e2c938e524af63741c11a03f3ffdb71b6f9be16ccf5e5dfbb
MD5 d143680724792a5f9ca2dcf63837f006
BLAKE2b-256 d954c894567f1d33c22ec556422fbbcff5edfeeb15d80a51f53f4375536887af

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page