Skip to main content

Starlake Python Distribution For Dagster

Project description

starlake-dagster

starlake-dagster is the Starlake Python Distribution for Dagster.

It is recommended to use it in combinaison with starlake dag generation, but can be used directly as is in your DAGs.

Prerequisites

Before installing starlake-dagster, ensure the following minimum versions are installed on your system:

  • starlake: 1.0.0 or higher
  • python: 3.8 or higher

Installation

pip install starlake-orchestration[dagster] --upgrade

StarlakeDagsterJob

ai.starlake.dagster.StarlakeDagsterJob is an abstract factory class that extends the generic factory interface ai.starlake.job.IStarlakeJob and is responsible for generating the Dagster node that will run the import, load and transform starlake commands.

sl_import

It generates the Dagster node that will run the starlake import command.

def sl_import(
    self, 
    task_id: str, 
    domain: str, 
    **kwargs) -> op:
    #...
name type description
task_id str the optional task id ({domain}_import by default)
domain str the required domain to import

sl_load

It generates the Dagster node that will run the starlake load command.

def sl_load(
    self, 
    task_id: str, 
    domain: str, 
    table: str, 
    spark_config: StarlakeSparkConfig=None,
    **kwargs) -> op:
    #...
name type description
task_id str the optional task id ({domain}_{table}_load by default)
domain str the required domain of the table to load
table str the required table to load
spark_config StarlakeSparkConfig the optional ai.starlake.job.StarlakeSparkConfig

sl_transform

It generates the Dagster node that will run the starlake transform command.

def sl_transform(
    self, 
    task_id: str, 
    transform_name: str, 
    transform_options: str=None, 
    spark_config: StarlakeSparkConfig=None, **kwargs) -> op:
    #...
name type description
task_id str the optional task id ({transform_name} by default)
transform_name str the transform to run
transform_options str the optional transform options
spark_config StarlakeSparkConfig the optional ai.starlake.job.StarlakeSparkConfig

sl_job

Ultimately, all these methods will call the sl_job method that needs to be implemented in all concrete factory classes.

def sl_job(
    self, 
    task_id: str, 
    arguments: list, 
    spark_config: StarlakeSparkConfig=None, 
    **kwargs) -> op:
    #...
name type description
task_id str the required task id
arguments list The required arguments of the starlake command to run
spark_config StarlakeSparkConfig the optional ai.starlake.job.StarlakeSparkConfig

Init

To initialize this class, you may specify the optional pre load strategy and options to use.

    def __init__(self, pre_load_strategy: Union[StarlakePreLoadStrategy, str, None], options: dict=None, **kwargs) -> None:
        """Overrides IStarlakeJob.__init__()
        Args:
            pre_load_strategy (Union[StarlakePreLoadStrategy, str, None]): The pre-load strategy to use.
            options (dict): The options to use.
        """
        super().__init__(pre_load_strategy, options, **kwargs)
        #...

StarlakePreLoadStrategy

ai.starlake.job.StarlakePreLoadStrategy is an enum that defines the different pre load strategies that can be used to conditionaly load a domain.

The pre-load strategy is implemented by sl_pre_load method that will generate the Dagster node corresponding to the choosen strategy.

def sl_pre_load(
    self, 
    domain: str, 
    pre_load_strategy: Union[StarlakePreLoadStrategy, str, None]=None,
    **kwargs) -> op:
    #...
name type description
domain str the domain to load
pre_load_strategy str the optional pre load strategy (self.pre_load_strategy by default)
NONE

The load of the domain will not be conditionned and no pre-load op will be executed.

none strategy example

IMPORTED

This strategy implies that at least one file is present in the landing area (SL_ROOT/importing/{domain} by default, if option incoming_path has not been specified). If there is one or more files to load, the method sl_import will be called to import the domain before loading it, otherwise the loading of the domain will be skipped.

imported strategy example

PENDING

This strategy implies that at least one file is present in the pending datasets area of the domain (SL_ROOT/datasets/pending/{domain} by default if option pending_path has not been specified), otherwise the loading of the domain will be skipped.

pending strategy example

ACK

This strategy implies that an ack file is present at the specified path (option global_ack_file_path), otherwise the loading of the domain will be skipped.

ack strategy example

Options

The following options can be specified in all concrete factory classes:

name type description
sl_env_var str optional starlake environment variables passed as an encoded json string
pre_load_strategy str one of none (default), imported, pending or ack
incoming_path str path to the landing area for the domain to load ({SL_ROOT}/incoming by default)
pending_path str path to the pending datastets for the domain to load ({SL_DATASETS}/pending by default)
global_ack_file_path str path to the ack file ({SL_DATASETS}/pending/{domain}/{{{{ds}}}}.ack by default)
ack_wait_timeout int timeout in seconds to wait for the ack file(1 hour by default)

On premise

StarlakeDagsterShellJob

This class is a concrete implementation of StarlakeDagsterJob that generates nodes using dagster-shell library. Usefull for on premise execution.

An additional SL_STARLAKE_PATH option is required to specify the path to the starlake executable.

StarlakeDagsterShellJob Load Example

The following example shows how to use StarlakeDagsterShellJob to generate dynamically Jobs that load domains using starlake and record corresponding Dagster assets.

description="""example to load domain(s) using dagster starlake shell job"""

options = {
    # General options
    'sl_env_var':'{"SL_ROOT": "/starlake/samples/starbake"}', 
    'pre_load_strategy':'ack', 
    # Bash options
    'SL_STARLAKE_PATH':'/starlake/starlake.sh', 
}

from ai.starlake.dagster.shell import StarlakeDagsterShellJob

sl_job = StarlakeDagsterShellJob(options=options)

import os

from dagster import ScheduleDefinition, GraphDefinition, Definitions, DependencyDefinition, JobDefinition, In, InputMapping, Out, Output, OutputMapping, graph, op

from dagster._core.definitions.input import InputDefinition

schedules= [
    {
        'schedule': 'None',
        'cron': '0 0 * * *',
        'domains': [
            {
                'name':'starbake',
                'final_name':'starbake',
                'tables': [
                    {
                        'name': 'Customers',
                        'final_name': 'Customers'
                    },
                    {
                        'name': 'Ingredients',
                        'final_name': 'Ingredients'
                    },
                    {
                        'name': 'Orders',
                        'final_name': 'Orders'
                    },
                    {
                        'name': 'Products',
                        'final_name': 'Products'
                    }
                ]
            }
        ]
    }
]

start = sl_job.dummy_op(task_id="start")

def load_domain(domain: dict) -> GraphDefinition:
    tables = [table["name"] for table in domain["tables"]]

    ins = {"domain": In(str)}

    op_tables = [sl_job.sl_load(task_id=None, domain=domain["name"], table=table, ins=ins) for table in tables]

    ld_end = sl_job.dummy_op(task_id=f"{domain['name']}_load_ended", ins={f"{op_table._name}": In(str) for op_table in op_tables}, out="domain_loaded")

    ld_end_dependencies = dict()

    for op_table in op_tables:
        ld_end_dependencies[f"{op_table._name}"] = DependencyDefinition(op_table._name, 'result')

    ld_dependencies = {
        ld_end._name: ld_end_dependencies
    }

    ld_input_mappings=[
        InputMapping(
            graph_input_name="domain", 
            mapped_node_name=f"{op_table._name}",
            mapped_node_input_name="domain",
        )
        for op_table in op_tables
    ]

    ld_output_mappings=[
        OutputMapping(
            graph_output_name="domain_loaded",
            mapped_node_name=f"{ld_end._name}",
            mapped_node_output_name="domain_loaded",
        )
    ]

    ld = GraphDefinition(
        name=f"{domain['name']}_load",
        node_defs=op_tables + [ld_end],
        dependencies=ld_dependencies,
        input_mappings=ld_input_mappings,
        output_mappings=ld_output_mappings,
    )

    pld = sl_job.sl_pre_load(domain=domain["name"])

    @op(
        name=f"{domain['name']}_load_result",
        ins={"inputs": In()},
        out={"result": Out(str)},
    )
    def load_domain_result(context, inputs):
        context.log.info(f"inputs: {inputs}")
        yield Output(str(inputs), "result")

    @graph(
        name=f"{domain['name']}",
        input_defs=[InputDefinition(name="domain", dagster_type=str)],
    )
    def domain_graph(domain):
        if pld:
            load_domain, skip = pld(domain)
            return load_domain_result([ld(load_domain), skip])
        else:
            return ld(domain)

    return domain_graph

def load_domains(schedule: dict, index) -> GraphDefinition:
    dependencies = dict()

    nodes = [start]

    pre_tasks = sl_job.pre_tasks()
    if pre_tasks:
        result = list(pre_tasks.output_dict.keys())[0]
        if result:
            dependencies[start._name] = {
                'start': DependencyDefinition(pre_tasks._name, result)
            }
            nodes.append(pre_tasks)

    node_defs = [load_domain(domain) for domain in schedule["domains"]]

    ins = dict()

    end_dependencies = dict()

    for node_def in node_defs:
        nodes.append(node_def)
        dependencies[node_def._name] = {
            'domain': DependencyDefinition(start._name, 'result')
        }
        result = f"{node_def._name}_result"
        ins[result] = In(dagster_type=str)
        end_dependencies[result] = DependencyDefinition(node_def._name, 'result')

    end = sl_job.dummy_op(task_id="end", ins=ins)
    nodes.append(end)
    dependencies[end._name] = end_dependencies

    post_tasks = sl_job.post_tasks()
    if post_tasks:
        input = list(post_tasks.input_dict.keys())[0]
        if input:
            dependencies[post_tasks._name] = {
                input: DependencyDefinition(end._name, 'result')
            }
            nodes.append(post_tasks)

    return GraphDefinition(
        name=f'schedule_{index}' if len(schedules) > 1 else 'schedule',
        node_defs=nodes,
        dependencies=dependencies,
    )

def job_name(index) -> str:
    job_name = os.path.basename(__file__).replace(".py", "").replace(".pyc", "").lower()
    return (f"{job_name}_{index}" if len(schedules) > 1 else job_name)

def generate_job(schedule: dict, index) -> JobDefinition:
    return JobDefinition(
        name=job_name(index),
        description=description,
        graph_def=load_domains(schedule, index),
    )

crons = []
for index, schedule in enumerate(schedules):
    cron = schedule['cron']
    if(cron):
        crons.append(ScheduleDefinition(job_name = job_name(index), cron_schedule = cron))

defs = Definitions(
   jobs=[generate_job(schedule, index) for index, schedule in enumerate(schedules)],
   schedules=crons,
)

load jobs generated with StarlakeDagsterShellJob with ack pre load strategy

If we want to apply the none pre load strategy instead, we just need to change the pre_load_strategy option to none:

load jobs generated with StarlakeDagsterShellJob without pre load strategy

StarlakeDagsterShellJob Transform Example

The following example shows how to use StarlakeDagsterShellJob to generate dynamically transform Jobs using starlake and record corresponding Dagster assets.

description="""example of transform using dagster starlake shell job"""

options = {
    # General options
    'sl_env_var':'{"SL_ROOT": "/starlake/samples/starbake"}', 
    # Bash options
    'SL_STARLAKE_PATH':'/starlake/starlake.sh', 
}

from ai.starlake.dagster.shell import StarlakeDagsterShellJob

sl_job = StarlakeDagsterShellJob(options=options)

from ai.starlake.common import sanitize_id
from ai.starlake.job import StarlakeSparkConfig

import json
import os
import sys
from typing import Set, List


from ai.starlake.dagster import StarlakeDagsterJob

from dagster import AssetKey, MultiAssetSensorDefinition, MultiAssetSensorEvaluationContext, RunRequest, SkipReason, Nothing, In, DependencyDefinition, JobDefinition, GraphDefinition, Definitions, ScheduleDefinition

cron = "None"

task_deps=json.loads("""[ {
  "data" : {
    "name" : "Customers.HighValueCustomers",
    "typ" : "task",
    "parent" : "Customers.CustomerLifeTimeValue",
    "parentTyp" : "task",
    "parentRef" : "CustomerLifetimeValue",
    "sink" : "Customers.HighValueCustomers"
  },
  "children" : [ {
    "data" : {
      "name" : "Customers.CustomerLifeTimeValue",
      "typ" : "task",
      "parent" : "starbake.Customers",
      "parentTyp" : "table",
      "parentRef" : "starbake.Customers",
      "sink" : "Customers.CustomerLifeTimeValue"
    },
    "children" : [ {
      "data" : {
        "name" : "starbake.Customers",
        "typ" : "table",
        "parentTyp" : "unknown"
      },
      "task" : false
    }, {
      "data" : {
        "name" : "starbake.Orders",
        "typ" : "table",
        "parentTyp" : "unknown"
      },
      "task" : false
    } ],
    "task" : true
  } ],
  "task" : true
} ]""")

job_name = os.path.basename(__file__).replace(".py", "").replace(".pyc", "").lower()

# if you want to load dependencies, set load_dependencies to True in the options
load_dependencies: bool = StarlakeDagsterJob.get_context_var(var_name='load_dependencies', default_value='False', options=options).lower() == 'true'

sensor = None

# if you choose to not load the dependencies, a sensor will be created to check if the dependencies are met
if not load_dependencies:
    assets: Set[str] = []

    def load_assets(task: dict):
        if 'children' in task:
            for child in task['children']:
                assets.append(sanitize_id(child['data']['name']))
                load_assets(child)

    for task in task_deps:
        load_assets(task)

    def multi_asset_sensor_with_skip_reason(context: MultiAssetSensorEvaluationContext):
        asset_events = context.latest_materialization_records_by_key()
        if all(asset_events.values()):
            context.advance_all_cursors()
            return RunRequest()
        elif any(asset_events.values()):
            materialized_asset_key_strs = [
                key.to_user_string() for key, value in asset_events.items() if value
            ]
            not_materialized_asset_key_strs = [
                key.to_user_string() for key, value in asset_events.items() if not value
            ]
            return SkipReason(
                f"Observed materializations for {materialized_asset_key_strs}, "
                f"but not for {not_materialized_asset_key_strs}"
            )
        else:
            return SkipReason("No materializations observed")

    sensor = MultiAssetSensorDefinition(
        name = f'{job_name}_sensor',
        monitored_assets = list(map(lambda asset: AssetKey(asset), assets)),
        asset_materialization_fn = multi_asset_sensor_with_skip_reason,
        minimum_interval_seconds = 60,
        description = f"Sensor for {job_name}",
        job_name = job_name,
    )

def compute_task_id(task) -> str:
    task_name = task['data']['name']
    task_type = task['data']['typ']
    task_id = sanitize_id(task_name)
    if (task_type == 'task'):
        task_id = task_id + "_task"
    else:
        task_id = task_id + "_table"
    return task_id

def create_task(task_id: str, task_name: str, task_type: str, ins: dict={"start": In(Nothing)}):
    spark_config_name=StarlakeDagsterJob.get_context_var('spark_config_name', task_name.lower(), options)
    if (task_type == 'task'):
        return sl_job.sl_transform(
            task_id=task_id, 
            transform_name=task_name,
            spark_config=spark_config(spark_config_name, **sys.modules[__name__].__dict__.get('spark_properties', {})),
            ins=ins,
        )
    else:
        load_domain_and_table = task_name.split(".",1)
        domain = load_domain_and_table[0]
        table = load_domain_and_table[1]
        return sl_job.sl_load(
            task_id=task_id, 
            domain=domain, 
            table=table,
            spark_config=spark_config(spark_config_name, **sys.modules[__name__].__dict__.get('spark_properties', {})),
            ins=ins,
        )

from dagster._core.definitions import NodeDefinition

start = sl_job.dummy_op(task_id="start")

def generate_node_for_task(task, dependencies: dict, nodes: List[NodeDefinition]) -> NodeDefinition :
    task_name = task['data']['name']
    task_type = task['data']['typ']
    task_id = compute_task_id(task)

    if (load_dependencies and 'children' in task):

        parent_dependencies = dict()

        ins = dict()

        for child in task['children']:
            child_task_id = compute_task_id(child)
            ins[child_task_id] = In(Nothing)
            parent_dependencies[child_task_id] = DependencyDefinition(child_task_id, 'result')
            nodes.append(generate_node_for_task(child, dependencies, nodes))

        dependencies[task_id] = parent_dependencies

        parent = create_task(task_id=task_id, task_name=task_name, task_type=task_type, ins=ins)
        nodes.append(parent)

        return parent

    else:
        node = create_task(task_id=task_id, task_name=task_name, task_type=task_type)
        nodes.append(node)
        dependencies[task_id] = {
            'start': DependencyDefinition(start._name, 'result')
        }
        return node

def generate_job():
    dependencies = dict()
    nodes = [start]

    pre_tasks = sl_job.pre_tasks()
    if pre_tasks:
        result = list(pre_tasks.output_dict.keys())[0]
        if result:
            dependencies[start._name] = {
                'start': DependencyDefinition(pre_tasks._name, result)
            }
            nodes.append(pre_tasks)

    ins = dict()
    end_dependencies = dict()
    for task in task_deps:
        node = generate_node_for_task(task, dependencies, nodes)
        ins[node._name] = In(Nothing)
        end_dependencies[node._name] = DependencyDefinition(node._name, 'result')
    end = sl_job.dummy_op(task_id="end", ins=ins)
    nodes.append(end)
    dependencies[end._name] = end_dependencies

    post_tasks = sl_job.post_tasks(ins={"start": In(Nothing)})
    if post_tasks:
        input = list(post_tasks.input_dict.keys())[0]
        if input:
            dependencies[post_tasks._name] = {
                input: DependencyDefinition(end._name, 'result')
            }
            nodes.append(post_tasks)

    return JobDefinition(
        name=job_name,
        description=description,
        graph_def=GraphDefinition(
            name=job_name,
            node_defs=nodes,
            dependencies=dependencies,
        ),
    )

crons = []

if cron.lower() != 'none':
    crons.append(ScheduleDefinition(job_name = job_name, cron_schedule = cron))

defs = Definitions(
   jobs=[generate_job()],
   schedules=crons,
   sensors=[sensor] if sensor else [],
)

transform job generated with StarlakeDagsterShellJob without dependencies

If we want to load the dependencies, we just need to set the load_dependencies option to True:

transform job generated with StarlakeDagsterShellJob with dependencies

Google Cloud Platform

StarlakeDagsterDataprocJob

This class is a concrete implementation of StarlakeDagsterJob that overrides the sl_job method that will run the starlake command by submitting Dataproc job to the configured Dataproc cluster.

It delegates to an instance of the dagster_gcp.DataprocResource class the responsibility to :

  • create the Dataproc cluster
  • submit Dataproc job to the latter
  • delete the Dataproc cluster

This instance is available through the __dataproc__ property of the StarlakeDagsterDataprocJob class and is configured using the ai.starlake.gcp.StarlakeDataprocClusterConfig class.

The creation of the Dataproc cluster can be performed by calling the pre_tasks method of the StarlakeDagsterDataprocJob.

The deletion of the Dataproc cluster can be performed by calling the post_tasks method of the StarlakeDagsterDataprocJob.

Dataproc cluster configuration

Additional options may be specified to configure the Dataproc cluster.

name type description
cluster_id str the optional unique id of the cluster that will participate in the definition of the Dataproc cluster name (if not specified)
dataproc_name str the optional dataproc name of the cluster that will participate in the definition of the Dataproc cluster name (if not specified)
dataproc_project_id str the optional dataproc project id (the project id on which the composer has been instantiated by default)
dataproc_region str the optional region (europe-west1 by default)
dataproc_subnet str the optional subnet (the default subnet if not specified)
dataproc_service_account str the optional service account (service-{self.project_id}@dataproc-accounts.iam.gserviceaccount.com by default)
dataproc_image_version str the image version of the dataproc cluster (2.2-debian1 by default)
dataproc_master_machine_type str the optional master machine type (n1-standard-4 by default)
dataproc_master_disk_type str the optional master disk type (pd-standard by default)
dataproc_master_disk_size int the optional master disk size (1024 by default)
dataproc_worker_machine_type str the optional worker machine type (n1-standard-4 by default)
dataproc_worker_disk_type str the optional worker disk size (pd-standard by default)
dataproc_worker_disk_size int the optional worker disk size (1024 by default)
dataproc_num_workers int the optional number of workers (4 by default)

All of these options will be used by default if no StarlakeDataprocClusterConfig was defined when instantiating StarlakeDagsterDataprocJob.

Dataproc Job configuration

Additional options may be specified to configure the Dataproc job.

name type description
spark_jar_list str the required list of spark jars to be used (using , as separator)
spark_bucket str the required bucket to use for spark and biqquery temporary storage
spark_job_main_class str the optional main class of the spark job (ai.starlake.job.Main by default)
spark_executor_memory str the optional amount of memory to use per executor process (11g by default)
spark_executor_cores int the optional number of cores to use on each executor (4 by default)
spark_executor_instances int the optional number of executor instances (1 by default)

spark_executor_memory, spark_executor_cores and spark_executor_instances options will be used by default if no StarlakeSparkConfig was passed to the sl_load and sl_transform methods.

StarlakeDagsterDataprocJob load Example

The following example shows how to use StarlakeDagsterDataprocJob to generate dynamically DAGs that load domains using starlake and record corresponding outlets.

description="""example to load domain(s) using dagster starlake dataproc job"""

options = {
    # General options
    'sl_env_var':'{"SL_ROOT": "gcs://starlake/samples/starbake"}', 
    'pre_load_strategy':'pending', 
    # Dataproc cluster configuration
    'dataproc_project_id':'starbake',
    # Dataproc job configuration 
    'spark_bucket':'my-bucket', 
    'spark_jar_list':'gcs://artifacts/starlake.jar', 
}

from ai.starlake.dagster.gcp import StarlakeDagsterDataprocJob

sl_job = StarlakeDagsterDataprocJob(options=options)

# all the code following the instantiation of the starlake job is exactly the same as that defined for StarlakeDagsterBashJob
#...

StarlakeDagsterCloudRunJob

This class is a concrete implementation of StarlakeDagsterJob that overrides the sl_job method that will run the starlake command by executing Cloud Run job.

Cloud Run job configuration

Additional options may be specified to configure the Cloud Run job.

name type description
cloud_run_project_id str the optional cloud run project id (the project id on which the composer has been instantiated by default)
cloud_run_job_name str the required name of the cloud run job
cloud_run_region str the optional region (europe-west1 by default)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

starlake-dagster-0.1.2.tar.gz (23.6 kB view hashes)

Uploaded Source

Built Distribution

starlake_dagster-0.1.2-py3-none-any.whl (20.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page