Skip to main content

Confidence intervals and p-values for sci-kit learn.

Project description

Statkit

Quickstart | Reference docs

Get 95% confidence intervals, p-values, and decision curves for your sci-kit learn models.

Contents

Quickstart

  • Estimate 95% confidence intervals for your test scores.

For example, to compute a 95% confidence interval of the area under the receiver operating characteristic curve (ROC AUC):

from sklearn.metrics import roc_auc_score
from statkit.non_parametric import bootstrap_score

y_prob = model.predict_proba(X_test)[:, 1]
auc_95ci = bootstrap_score(y_test, y_prob, metric=roc_auc_score)
print('Area under the ROC curve:', auc_95ci)
  • Compute p-value to test if one model is significantly better than another.

For example, to test if the area under the receiver operating characteristic curve (ROC AUC) of model 1 is significantly larger than model 2:

from sklearn.metrics import roc_auc_score
from statkit.non_parametric import paired_permutation_test

y_pred_1 = model_1.predict_proba(X_test)[:, 1]
y_pred_2 = model_2.predict_proba(X_test)[:, 1]
p_value = paired_permutation_test(y_test, y_pred_1, y_pred_2, metric=roc_auc_score)
  • Perform decision curve analysis by making net benefit plots of your sci-kit learn models. Compare the utility of different models and with decision policies to always or never take an action/intervention.

Net benefit curve

from matplotlib import pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from statkit.decision import NetBenefitDisplay

centers = [[0, 0], [1, 1]]
X_train, y_train = make_blobs(
    centers=centers, cluster_std=1, n_samples=20, random_state=5
)
X_test, y_test = make_blobs(
    centers=centers, cluster_std=1, n_samples=20, random_state=1005
)

baseline_model = LogisticRegression(random_state=5).fit(X_train, y_train)
y_pred_base = baseline_model.predict_proba(X_test)[:, 1]

tree_model = GradientBoostingClassifier(random_state=5).fit(X_train, y_train)
y_pred_tree = tree_model.predict_proba(X_test)[:, 1]

NetBenefitDisplay.from_predictions(y_test, y_pred_base, name='Baseline model')
NetBenefitDisplay.from_predictions(y_test, y_pred_tree, name='Gradient boosted trees', show_references=False, ax=plt.gca())

Detailed documentation can be on the Statkit API documentation pages.

Installation

pip3 install statkit

Support

You can open a ticket in the Issue tracker.

Contributing

We are open for contributions. If you open a pull request, make sure that your code is:

  • Well documented,
  • Code formatted with black,
  • And contains an accompanying unit test.

Authors and acknowledgment

Hylke C. Donker

License

This code is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

statkit-1.0.1.tar.gz (78.3 kB view details)

Uploaded Source

Built Distribution

statkit-1.0.1-py3-none-any.whl (21.4 kB view details)

Uploaded Python 3

File details

Details for the file statkit-1.0.1.tar.gz.

File metadata

  • Download URL: statkit-1.0.1.tar.gz
  • Upload date:
  • Size: 78.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for statkit-1.0.1.tar.gz
Algorithm Hash digest
SHA256 9128ceec67ac559050db36d6b8b1d43745320aed1a4b55193c849ce553f4cccd
MD5 58e6b63194248510920d619404102135
BLAKE2b-256 696815e0f6b7cfca84fa18ab52ac885011acbded3b8f1f599f6dbb7f365d6a3c

See more details on using hashes here.

File details

Details for the file statkit-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: statkit-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 21.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for statkit-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cd72070cad6037b3e66970996f3df39da27889741f64b49f44bba1b64084d313
MD5 b32e952495356f826c0d6592cb270a6f
BLAKE2b-256 5794a46446278b0fb0a984b3286e752882f17f4281982adb8947e0eafc6c470c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page