Skip to main content

A Streamlit custom component for a free drawing canvas using Fabric.js.

Project description

Streamlit - Drawable Canvas

Streamlit component which provides a sketching canvas using Fabric.js.

Streamlit App

Features

  • Draw freely, lines, circles and boxes on the canvas, with options on stroke & fill
  • Rotate, skew, scale, move any object of the canvas on demand
  • Select a background color or image to draw on
  • Get image data and every drawn object properties back to Streamlit !
  • Choose to fetch back data in realtime or on demand with a button
  • Undo, Redo or Drop canvas

Installation

pip install streamlit-drawable-canvas

Example Usage

Copy this code snippet:

import pandas as pd
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas

# Specify canvas parameters in application
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
drawing_mode = st.sidebar.selectbox(
    "Drawing tool:", ("freedraw", "line", "rect", "circle", "transform")
)
realtime_update = st.sidebar.checkbox("Update in realtime", True)

# Create a canvas component
canvas_result = st_canvas(
    fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
    stroke_width=stroke_width,
    stroke_color=stroke_color,
    background_color="" if bg_image else bg_color,
    background_image=Image.open(bg_image) if bg_image else None,
    update_streamlit=realtime_update,
    height=150,
    drawing_mode=drawing_mode,
    key="canvas",
)

# Do something interesting with the image data and paths
if canvas_result.image_data is not None:
    st.image(canvas_result.image_data)
if canvas_result.json_data is not None:
    st.dataframe(pd.json_normalize(canvas_result.json_data["objects"]))

Or run the app.py example:

streamlit run app.py

Development

Install

  • JS side
cd frontend
npm install
  • Python side
conda create -n streamlit-drawable-canvas python=3.7
conda activate streamlit-drawable-canvas
pip install -e .

Run

Both webpack dev server and Streamlit should run at the same time.

  • JS side
cd frontend
npm run start
  • Python side
streamlit run app.py

Cypress integration tests

  • Install Cypress: cd e2e; npm i or npx install cypress (with --force if cache problem)
  • Start Streamlit frontend server: cd streamlit_drawable_canvas/frontend; npm run start
  • Start Streamlit test script: streamlit run e2e/app_to_test.py
  • Start Cypress app: cd e2e; npm run cypress:open

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamlit-drawable-canvas-0.5.2.tar.gz (3.3 MB view details)

Uploaded Source

Built Distribution

streamlit_drawable_canvas-0.5.2-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file streamlit-drawable-canvas-0.5.2.tar.gz.

File metadata

  • Download URL: streamlit-drawable-canvas-0.5.2.tar.gz
  • Upload date:
  • Size: 3.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for streamlit-drawable-canvas-0.5.2.tar.gz
Algorithm Hash digest
SHA256 8af41c04df07e024b7f2b9d99191d7652472dd1b6c1fc68535d33826e43dfbb0
MD5 27d7a6268784197ca6f390f5588652ef
BLAKE2b-256 7044c95e40160bfcd77bb3dafc50745d7c129e2b19da7b0616ffe2abc6d05c95

See more details on using hashes here.

File details

Details for the file streamlit_drawable_canvas-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: streamlit_drawable_canvas-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.7

File hashes

Hashes for streamlit_drawable_canvas-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1629743eef74f9b5daa6b805057f69e445331415ecda57f8c2cf0485b25a150d
MD5 3be91dbc57f63700bd0e924a256a5e2a
BLAKE2b-256 fa8c523933de301b0fa5f220541bd7e4f0c8e04b5847c44220f6f2573cc277f0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page