Skip to main content

Python module for detecting password, api keys hashes and any other string that resembles a randomly generated character sequence.

Project description

Downloads Downloads Weekly daily Version Python 3 GitHub stars

stringlifier

String-classifier - is a python module for detecting random string and hashes text/code.

Typical usage scenarios include:

  • Sanitizing application or security logs
  • Detecting accidentally exposed credentials (complex passwords or api keys)

Interactive notebook

You can see Stringlifier in action by checking out this interactive notebook hosted on Colaboratory.

Quick start guide

You can quickly use stringlifier via pip-installation:

$ pip install stringlifier

In case you are using the pip3 installation that comes with Python3, use pip3 instead of pip in the above command.

$ pip3 install stringlifier

API example:

from stringlifier.api import Stringlifier

stringlifier=Stringlifier()

s = stringlifier("com.docker.hyperkit -A -u -F vms/0/hyperkit.pid -c 8 -m 8192M -b 127.0.0.1 --pass=\"NlcXVpYWRvcg\" -s 0:0,hostbridge -s 31,lpc -s 1:0,virtio-vpnkit,path=vpnkit.eth.sock,uuid=45172425-08d1-41ec-9d13-437481803412 -U c6fb5010-a83e-4f74-9a5a-50d9086b9")

After this, s should be:

'com.docker.hyperkit -A -u -F vms/0/hyperkit.pid -c 8 -m 8192M -b <IP_ADDR> --pass="<RANDOM_STRING>" -s 0:0,hostbridge -s 31,lpc -s 1:0,virtio-vpnkit,path=vpnkit.eth.sock,uuid=<UUID> -U <UUID>'

You can also choose to see the full tokenization and classification output:

s, tokens = stringlifier("com.docker.hyperkit -A -u -F vms/0/hyperkit.pid -c 8 -m 8192M -b 127.0.0.1 --pass=\"NlcXVpYWRvcg\" -s 0:0,hostbridge -s 31,lpc -s 1:0,virtio-vpnkit,path=vpnkit.eth.sock,uuid=45172425-08d1-41ec-9d13-437481803412 -U c6fb5010-a83e-4f74-9a5a-50d9086b9", return_tokens=True)

s will be the same as before and tokens will contain the following data:

[[('0', 33, 34, '<NUMERIC>'),
   ('8', 51, 52, '<NUMERIC>'),
   ('8192', 56, 60, '<NUMERIC>'),
   ('127.0.0.1', 65, 74, '<IP_ADDR>'),
   ('NlcXVpYWRvcg', 83, 95, '<RANDOM_STRING>'),
   ('0', 100, 101, '<NUMERIC>'),
   ('0', 102, 103, '<NUMERIC>'),
   ('31', 118, 120, '<NUMERIC>'),
   ('1', 128, 129, '<NUMERIC>'),
   ('0', 130, 131, '<NUMERIC>'),
   ('45172425-08d1-41ec-9d13-437481803412', 172, 208, '<UUID>'),
   ('c6fb5010-a83e-4f74-9a5a-50d9086b9', 212, 244, '<UUID>')]]

Building your own classifier

You can also train your own model if you want to detect different types of strings. For this you can use the Command Line Interface for the string classifier:

$ python3 stringlifier/modules/stringc.py --help

Usage: stringc.py [options]

Options:
  -h, --help            show this help message and exit
  --interactive
  --train
  --resume
  --train-file=TRAIN_FILE
  --dev-file=DEV_FILE
  --store=OUTPUT_BASE
  --patience=PATIENCE   (default=20)
  --batch-size=BATCH_SIZE
                        (default=32)
  --device=DEVICE

For instructions on how to generate your training data, use this link.

Important note: This model might not scale if detecting a type of string depends on the surrounding tokens. In this case, you can look at a more advanced tool for sequence processing such as NLP-Cube

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for stringlifier, version 0.1.1.4
Filename, size File type Python version Upload date Hashes
Filename, size stringlifier-0.1.1.4.tar.gz (2.0 MB) File type Source Python version None Upload date Hashes View
Filename, size stringlifier-0.1.1.4-py3-none-any.whl (2.0 MB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page