STUDIOLAB ML inference Package
Project description
STUDIOLAB ML inference Package
Install
- pip install studiolab-ml
RUN
All input image type is PIL Image
MLFT
from studiolab_ml import MLFT
mlft = MLFT()
out = mlft.predict(img, cat_id)
- result is same dict type as "get_attributes" in ML-API
Pose Compo
from studiolab_ml import PoseCompo
pcp = PoseCompo()
out = pcp.predict(img)
- output examples
- outfit image - {'cut': 'outfit', 'background': 'blind', 'direction': 'front', 'head': 'head', 'part': 'full', 'pose': 'stand', 'detail': None}
- product image - {'cut': 'product', 'background': None, 'direction': 'front', 'head': None, 'part': None, 'pose': None, 'detail': None}
- detail image - {'cut': 'detail', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': [shoulder, sleeve, ..]}
- noise image - {'cut': 'noise', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': None}
FIC
from studiolab_ml import PoseCompo
infer = FIC(api_key)
res = infer(attribute_dict, user_inputs_dict)
- input and result is same dict type as "get_gpt_content" in ML-API
TODO
- create model cloud storage
- model download from cloud
- GPU inference
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
studiolab_ml-0.1.1.tar.gz
(35.5 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file studiolab_ml-0.1.1.tar.gz.
File metadata
- Download URL: studiolab_ml-0.1.1.tar.gz
- Upload date:
- Size: 35.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6afe3de1662d2ae763bb7cdfb9d929ed4a507cc59594dab1b67a0160e0222fdf
|
|
| MD5 |
79af09d9f4350734f0df708e3306661c
|
|
| BLAKE2b-256 |
6aac5c41860853787bef0b73704f2c11c19325ec8c06875d03550f3c761e52b8
|
File details
Details for the file studiolab_ml-0.1.1-py3-none-any.whl.
File metadata
- Download URL: studiolab_ml-0.1.1-py3-none-any.whl
- Upload date:
- Size: 47.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
30a0d76d206e85cd0fb746ed324775d2cff5dcefd19d19e07cd209e0f3556380
|
|
| MD5 |
3108730942ff8b5d2bb2edbfd97f4ddd
|
|
| BLAKE2b-256 |
7394eb50879c3a599f834ce76c6064ad36bdd38413c6ac46494657c193c8cc79
|