Skip to main content

STUDIOLAB ML inference Package

Project description

STUDIOLAB ML inference Package

Install

  • pip install studiolab-ml

RUN

All input image type is PIL Image

MLFT

from studiolab_ml import MLFT

mlft = MLFT()
out = mlft.predict(img, cat_id)
  • result is same dict type as "get_attributes" in ML-API

Pose Compo

from studiolab_ml import PoseCompo

pcp = PoseCompo()
out = pcp.predict(img)
  • output examples
  • outfit image - {'cut': 'outfit', 'background': 'blind', 'direction': 'front', 'head': 'head', 'part': 'full', 'pose': 'stand', 'detail': None}
  • product image - {'cut': 'product', 'background': None, 'direction': 'front', 'head': None, 'part': None, 'pose': None, 'detail': None}
  • detail image - {'cut': 'detail', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': [shoulder, sleeve, ..]}
  • noise image - {'cut': 'noise', 'background': None, 'direction': None, 'head': None, 'part': None, 'pose': None, 'detail': None}

FIC

from studiolab_ml import PoseCompo

infer = FIC(api_key)
res = infer(attribute_dict, user_inputs_dict)
  • input and result is same dict type as "get_gpt_content" in ML-API

TODO

  • create model cloud storage
  • model download from cloud
  • GPU inference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

studiolab_ml-0.1.1.tar.gz (35.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

studiolab_ml-0.1.1-py3-none-any.whl (47.0 kB view details)

Uploaded Python 3

File details

Details for the file studiolab_ml-0.1.1.tar.gz.

File metadata

  • Download URL: studiolab_ml-0.1.1.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for studiolab_ml-0.1.1.tar.gz
Algorithm Hash digest
SHA256 6afe3de1662d2ae763bb7cdfb9d929ed4a507cc59594dab1b67a0160e0222fdf
MD5 79af09d9f4350734f0df708e3306661c
BLAKE2b-256 6aac5c41860853787bef0b73704f2c11c19325ec8c06875d03550f3c761e52b8

See more details on using hashes here.

File details

Details for the file studiolab_ml-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: studiolab_ml-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 47.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for studiolab_ml-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 30a0d76d206e85cd0fb746ed324775d2cff5dcefd19d19e07cd209e0f3556380
MD5 3108730942ff8b5d2bb2edbfd97f4ddd
BLAKE2b-256 7394eb50879c3a599f834ce76c6064ad36bdd38413c6ac46494657c193c8cc79

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page