Skip to main content

Surface water network

Project description

Surface water network

DOI Codacy Codcov CI

A Python package to create and analyze surface water networks.

Python packages

Python 3.8+ is required.

Required

  • geopandas >=0.9 - process spatial data similar to pandas
  • packaging - used to check package versions
  • pandas >=1.2 - tabular data analysis
  • pyproj >=2.2 - spatial projection support
  • rtree - spatial index support

Optional

  • flopy >=3.3.6 - read/write MODFLOW models
  • netCDF4 - used to read TopNet files

Testing

Run pytest -v or python3 -m pytest -v

For faster multi-core pytest -v -n 2 (with pytest-xdist)

To run doctests pytest -v swn --doctest-modules

Examples

import geopandas
import pandas as pd
import swn

Read from Shapefile:

shp_srs = 'tests/data/DN2_Coastal_strahler1z_stream_vf.shp'
lines = geopandas.read_file(shp_srs)
lines.set_index('nzsegment', inplace=True, verify_integrity=True)  # optional

Or, read from PostGIS:

from sqlalchemy import create_engine, engine

con_url = engine.url.URL(drivername='postgresql', database='scigen')
con = create_engine(con_url)
sql = 'SELECT * FROM wrc.rec2_riverlines_coastal'
lines = geopandas.read_postgis(sql, con)
lines.set_index('nzsegment', inplace=True, verify_integrity=True)  # optional

Initialise and create network:

n = swn.SurfaceWaterNetwork.from_lines(lines.geometry)
print(n)
# <SurfaceWaterNetwork: with Z coordinates
#   304 segments: [3046409, 3046455, ..., 3050338, 3050418]
#   154 headwater: [3046409, 3046542, ..., 3050338, 3050418]
#   3 outlets: [3046700, 3046737, 3046736]
#   no diversions />

Plot the network, write a Shapefile, write and read a SurfaceWaterNetwork file:

n.plot()

swn.file.gdf_to_shapefile(n.segments, 'segments.shp')

n.to_pickle('network.pkl')
n = swn.SurfaceWaterNetwork.from_pickle('network.pkl')

Remove segments that meet a condition (stream order), or that are upstream/downstream from certain locations:

n.remove(
    n.segments.stream_order == 1,
    segnums=n.gather_segnums(upstream=3047927))

Read flow data from a TopNet netCDF file, convert from m3/s to m3/day:

nc_path = 'tests/data/streamq_20170115_20170128_topnet_03046727_strahler1.nc'
flow = swn.file.topnet2ts(nc_path, 'mod_flow', 86400)
# remove time and truncate to closest day
flow.index = flow.index.floor('d')

# 7-day mean
flow7d = flow.resample('7D').mean()

# full mean
flow_m = pd.DataFrame(flow.mean(0)).T

Process a MODFLOW/flopy model:

import flopy

m = flopy.modflow.Modflow.load('h.nam', model_ws='tests/data', check=False)
nm = swn.SwnModflow.from_swn_flopy(n, m)
nm.default_segment_data()
nm.set_segment_data_inflow(flow_m)
nm.plot()
nm.to_pickle('sfr_network.pkl')
nm = swn.SwnModflow.from_pickle('sfr_network.pkl', n, m)
nm.set_sfr_obj()
m.sfr.write_file('file.sfr')
nm.grid_cells.to_file('grid_cells.shp')
nm.reaches.to_file('reaches.shp')

Citation

Toews, M. W.; Hemmings, B. 2019. A surface water network method for generalising streams and rapid groundwater model development. In: New Zealand Hydrological Society Conference, Rotorua, 3-6 December, 2019. p. 166-169.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

surface_water_network-0.8.tar.gz (556.5 kB view hashes)

Uploaded Source

Built Distribution

surface_water_network-0.8-py3-none-any.whl (101.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page