This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
PySVMLight
==========

A Python binding to the [SVM-Light](http://svmlight.joachims.org/) support vector machine library by Thorsten Joachims.

Written by Bill Cauchois (<wcauchois@gmail.com>), with thanks to Lucas Beyer and n0mad for their contributions.

Installation
------------
PySVMLight uses distutils for setup. Installation is as simple as

$ chmod +x setup.py
$ ./setup.py --help
$ ./setup.py build

If you want to install SVMLight to your PYTHONPATH, type:

$ ./setup.py install

(You may need to execute this command as the superuser.) Otherwise, look in the build/ directory to find svmlight.so and copy that file to the directory of your project. You should now be able to `import svmlight`.

Getting Started
---------------
See examples/simple.py for example usage.

Reference
---------

If you type `help(svmlight)`, you will see that there are currently three functions.

learn(training_data, **options) -> model

Train a model based on a set of training data. The training data should be in the following format:

>> (<label>, [(<feature>, <value>), ...])

or

>> (<label>, [(<feature>, <value>), ...], <queryid>)

See examples/data.py for an example of some training data. Available options include (corresponding roughly to the command-line options for `svmlight` detailed on [this page](http://svmlight.joachims.org/) under the section titled "How to use"):

- `type`: select between 'classification', 'regression', 'ranking' (preference ranking), and 'optimization'.
- `kernel`: select between 'linear', 'polynomial', 'rbf', and 'sigmoid'.
- `verbosity`: set the verbosity level (default 0).
- `C`: trade-off between training error and margin.
- `poly_degree`: parameter d in polynomial kernel.
- `rbf_gamma`: parameter gamma in rbf kernel.
- `coef_lin`
- `coef_const`

The result of this call is a model that you can pass to classify().

classify(model, test_data, **options) -> predictions

Classify a set of test data using the provided model. The test data should be in the same format as training data (see above). The result will be a list of floats, corresponding to predicted labels for each of the test instances.

write_model(model, filename) -> None

Write the provided model to the specified file. The file format used is the same format as that used by the command-line `svmlight` program.

read_model(filename) -> model

Read a model that was saved using write_model().
Release History

Release History

0.4

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
svmlight-0.4.tar.gz (54.9 kB) Copy SHA256 Checksum SHA256 Source Feb 7, 2012

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting