Skip to main content

Naive SVM library in Python

Project description

By Andrew Tulloch (http://tullo.ch)

Introduction

This is a basic implementation of a soft-margin kernel SVM solver in Python using numpy and cvxopt.

See http://tullo.ch/articles/svm-py/ for a description of the algorithm used and the general theory behind SVMs.

Demonstration

Run bin/svm-py-demo –help.

∴ bin/svm-py-demo --help
usage: svm-py-demo [-h] [--num-samples NUM_SAMPLES]
                   [--num-features NUM_FEATURES] [-g GRID_SIZE] [-f
                   FILENAME]

optional arguments:
  -h, --help            show this help message and exit
  --num-samples NUM_SAMPLES
  --num-features NUM_FEATURES
  -g GRID_SIZE, --grid-size GRID_SIZE
  -f FILENAME, --filename FILENAME

For example,

bin/svm-py-demo --num-samples=100 --num-features=2 --grid-size=500 --filename=svm500.pdf

yields the image

http://i.imgur.com/yy0oUVk.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

svmpy-0.3.tar.gz (3.9 kB view hashes)

Uploaded source

Built Distribution

svmpy-0.3.macosx-10.8-x86_64.exe (66.9 kB view hashes)

Uploaded any

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page