Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation. Furthermore, swiglpk provides binary wheels for all major platforms, which are always up-to-date with the most recent GLPK version (swiglpk versions follow GLPK versioning in the major and minor version digits to emphasize that).

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

swiglpk-5.0.10.tar.gz (37.6 kB view details)

Uploaded Source

Built Distributions

swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (776.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (776.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (777.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (1.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

swiglpk-5.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (776.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

swiglpk-5.0.10-cp312-cp312-win_amd64.whl (574.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

swiglpk-5.0.10-cp312-cp312-win32.whl (464.9 kB view details)

Uploaded CPython 3.12 Windows x86

swiglpk-5.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

swiglpk-5.0.10-cp312-cp312-macosx_11_0_arm64.whl (743.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

swiglpk-5.0.10-cp312-cp312-macosx_10_9_x86_64.whl (788.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

swiglpk-5.0.10-cp311-cp311-win_amd64.whl (573.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

swiglpk-5.0.10-cp311-cp311-win32.whl (463.7 kB view details)

Uploaded CPython 3.11 Windows x86

swiglpk-5.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

swiglpk-5.0.10-cp311-cp311-macosx_11_0_arm64.whl (743.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

swiglpk-5.0.10-cp311-cp311-macosx_10_9_x86_64.whl (786.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

swiglpk-5.0.10-cp310-cp310-win_amd64.whl (573.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

swiglpk-5.0.10-cp310-cp310-win32.whl (463.7 kB view details)

Uploaded CPython 3.10 Windows x86

swiglpk-5.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

swiglpk-5.0.10-cp310-cp310-macosx_11_0_arm64.whl (743.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

swiglpk-5.0.10-cp310-cp310-macosx_10_9_x86_64.whl (786.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

swiglpk-5.0.10-cp39-cp39-win_amd64.whl (573.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

swiglpk-5.0.10-cp39-cp39-win32.whl (463.8 kB view details)

Uploaded CPython 3.9 Windows x86

swiglpk-5.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

swiglpk-5.0.10-cp39-cp39-macosx_11_0_arm64.whl (743.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

swiglpk-5.0.10-cp39-cp39-macosx_10_9_x86_64.whl (786.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

swiglpk-5.0.10-cp38-cp38-win_amd64.whl (573.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

swiglpk-5.0.10-cp38-cp38-win32.whl (463.7 kB view details)

Uploaded CPython 3.8 Windows x86

swiglpk-5.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

swiglpk-5.0.10-cp38-cp38-macosx_11_0_arm64.whl (743.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

swiglpk-5.0.10-cp38-cp38-macosx_10_9_x86_64.whl (786.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

swiglpk-5.0.10-cp37-cp37m-win_amd64.whl (572.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

swiglpk-5.0.10-cp37-cp37m-win32.whl (463.6 kB view details)

Uploaded CPython 3.7m Windows x86

swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp37-cp37m-macosx_10_9_x86_64.whl (786.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

swiglpk-5.0.10-cp36-cp36m-win_amd64.whl (582.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-5.0.10-cp36-cp36m-win32.whl (470.4 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (2.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

swiglpk-5.0.10-cp36-cp36m-macosx_10_9_x86_64.whl (786.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file swiglpk-5.0.10.tar.gz.

File metadata

  • Download URL: swiglpk-5.0.10.tar.gz
  • Upload date:
  • Size: 37.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10.tar.gz
Algorithm Hash digest
SHA256 57ac34ad334da95dd168114bfdb50ae10a2a6a3ddef21e4941f46fe430c5a7e1
MD5 c1ad8792802c5d75284cbbe4f63c5497
BLAKE2b-256 b7c3b635185e6af163af1b6ad786cc5afc6b5926405581c6ddd02c6f93f8a8d3

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f8491ff795b6a146b3ff429c67f04aed5cdc01dc90a7ece8d1b8e1bf22a2e06
MD5 1a7a9c5b97f4051ba6ffcb902d03e880
BLAKE2b-256 fbd155c113906741e03334d3294f64b0d782202e801c4e35da0638743f713e6b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 36b99ef9205aa6bea5d8070ef1e07a6a82ebf7449a008c383b9701f50eb0e835
MD5 33dd9d00c7202d4dc6bf8a5ba23941d3
BLAKE2b-256 236e251b54dc2ed8896b023f341882cda6f3c81963d96594aec7dd4092778ce3

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb8b722e8dc9e88348ebae54ca19c045dcc6377ce38972d3ae0fbaf9aa4d565f
MD5 22669b17e24a18d7cc36a2fc5629b056
BLAKE2b-256 d6809b2f223964ba8a81747b6b5ed55062361a2fb833c717ede900036a9da548

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02c58d62a753542f3092674f382d85b9f13f2cdcc0bf89f1adf7db354a839e6f
MD5 c0bb21d01bb61e822c6575a5bed2da7c
BLAKE2b-256 2c8a1cc66236bdc9840b78894745e85f99ac5eefaad714265dd70c431eadce71

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4954c1c7ce070afa94dbeb503532c11bdc801585a87188a23594c48a90a89cb1
MD5 0f383b373c469216ce60ebe03ee4604a
BLAKE2b-256 2e66889679fb0f1fcf05c56ef538fee3a1e36ef382be0ec0a172af21df356ea1

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7d7298b0d97665eb655658fdbfcc0fa9c4d9ee632ec0d4096a9a7280a68b05b
MD5 f40b8ffe4d9d36e0e798f4510a12ba7c
BLAKE2b-256 08368b3a013ac50037ff268576f9973f3df2f088a540ea75639fd0b3a4515c04

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a920fbedec663d0b2e7cef41a35a03057808040ffe0111d26d457142e248cd4
MD5 2e9070f5deac6d68f1acc5fbfc363638
BLAKE2b-256 e8edb1845c1c110cbb9b279f7faa45f9b895e5fca156a624baa0dd6b5dddb284

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0206eecb1a47ca91fd4d1339e560167943ec65439f0b3a17eb350d4ff63b4c0c
MD5 9cf071018f898800c8e40f375cc99707
BLAKE2b-256 ec02734b01e12547f9a2bd52658fb0f39fcbded72af20420274a07ac9371a634

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ecb5b9d7cf41f162438ded7bc5f5f2a756e7ec1062b4de61496094b607c99aa0
MD5 b4bac4052ee4483f5d2c49177d6050a9
BLAKE2b-256 89ab4cd6206daa3669e8f79034ae3a89321892d59ca608e3309da417985a4dc7

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5412c9959e7dfafc846bde5aadebbc049acab3e8dbda889ad989fd99d76dad79
MD5 bb30c660588b49979718092bc8058dcb
BLAKE2b-256 d5741841fc46a315d9c479f874d93a90ccd55ab66b38bcc488093d1c10c2279b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 234a2d7e4186d927488f8a81f1fffe15d6cc79643a4270cded6c39e3c7b0b682
MD5 ef68fb15cc7858dd57be12c5f50e415d
BLAKE2b-256 161f5ca2b18fb0745f0eb2730dd4456d9cdaf2fcbbf40fa83e577a51facef10d

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c348b1ac6c0bd28853553cf005447b0cc661fd8daccc1ebc9aba5b0b0605c8c9
MD5 8bfb7b3d59da20ddbb5967bbd547a7a2
BLAKE2b-256 37f16b6669c08a6f036193160e06c14e362becf7be8d43414286f82ad6791c61

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 574.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d28aac8db80bafc4a91b2d5b6a96791de96eb2d4fea32b8210b11743a0722d42
MD5 11ff7dd34d633b44b669fcb48f26f085
BLAKE2b-256 9761de6c95e4750bfbee4af606e14d25ad02a381e0339c5b6e75f122ec7216d0

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp312-cp312-win32.whl
  • Upload date:
  • Size: 464.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 6d9a7e63e9a73a44771413c4d8c59d3442bd63e71b6f01710a1a0c6348030621
MD5 8848d2c61846fea5ff08a576024332f4
BLAKE2b-256 1e8bd0d6a881a8b5c224cec6fc7aad7fc91c3011b5f7c29f1ce0cfc8be6fcf50

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 110e8ac831e44a4e09bd7ab1f7b88a4b6ae92b923191e206bccd413ff840ec5c
MD5 b67f052292d01d26581e0341c7d758ba
BLAKE2b-256 aba184d64bc9a6deb1ebfa0fdeb191777c03919001d1ee04c341a2fcbc91171b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 67156fc1224b82735904d2a0b049664976ff8a0708e15d3e8c823249e3803c6c
MD5 4bd731d9c3dfbd310dd57ec959c3548c
BLAKE2b-256 114613c7b2f6f8f1fc0378b6177144c4282c32ea413cc13476196939f6643024

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 49b1bf4dff2938bc551a4aadaf86b027d1d503d7ef60f8e01d037d88030831c0
MD5 0e1e2a0c9202190c92f2a74a476a3313
BLAKE2b-256 86596a0760bd342f642dd8fb4aea34fbd89fe9162c9fc59ec6a8779376855c23

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0b1fd9a5d0c20020bb4a624f94ca16b659fdda5e0c59686f88e5d683ab4441b
MD5 b1c6671ae2ec92db5c9d19d9a7d617de
BLAKE2b-256 0da3b3b2482a698b8aea2e924eee0d74b967016c07a4d4fc26742da829137ad4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7862f2a12f09337ef17f1518532f14d4a77a246437eacb4a431f596a7df608e
MD5 1758d0e5088246481991978cd661a29c
BLAKE2b-256 13ca9aa218fe08a61c314a53323a692cbdc6dad439b3ef7ded84788684d161f2

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eeb066918316034ec9c8dbed0e1e5e14df22761aab7eeb952868eed3716ae344
MD5 1628ad07eefb44265f84fe51b46908c3
BLAKE2b-256 efbea2b2a21013a8f13bfc947ef541d2927d90dec1ab3298243f2adf6abe5bb5

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 463.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 53751ffd429d8adf95aa02ed8a52b5da257958d17dc5a0f344f56379888ac956
MD5 98c877b7ee7b63c3afb54735d042478c
BLAKE2b-256 254c262a3e7998edae17f66e64d017247190b8be5e1dd759cb6cd44dd07401e4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b769b09c7af80101095cf1c3f341ac1c7c1f049905ec5da0925c998bbe0cb809
MD5 5f24faa307d3d602ba4d1597b1932a5a
BLAKE2b-256 05972439d56cce729df26602d800b398e29b7e151df5c1f34f0db34db3f05d17

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e30d85a194991c58acdc3d0374fb524e139d025e76ba46b734f8119316ab9a8d
MD5 43d439c160d14f0e53c002d75d150521
BLAKE2b-256 2ded7e44ac6d32c35fc2eb59d2546853ec60a4fde1a4342165789319169c3e87

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ce82748c96dfced697affbed9c22088306f7608601f12f1593e2792ae3ae244
MD5 a513a13b872745a9733196520a1b27bf
BLAKE2b-256 e309fbb262e1ce6ce7f4861daf05aada3c3cdb8df64e7a6bd82c1e974fd684d9

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 41df9c17cee06ac864acdb0a7f16d848dcc6bcdbb982950893f06cc97b148470
MD5 8022677cc94cd488a8f5811897494c6c
BLAKE2b-256 37815ceee713a044e6ee247033707d0e5f4c7a2b4c80ac2e6bc19eb3085ebf4d

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b29876e77c9e76a9cea411cb3d34a8b52f1de9cf5909caa88293a2303012eb23
MD5 39337538da90b38f824e63f6b060aeec
BLAKE2b-256 c997d580c6054bc4d59ca7f9138f65a9c147a73d4c4477030d968dc7c4c635d1

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c325dc74d7ae1c15f9e9fbc3eac032ecfecad483591afd4c0046050f51640328
MD5 40ab32187a5a8761dfa2e06c9c07670b
BLAKE2b-256 5e1e5291ce3317d8b20c924f17f722cecfa3bd92e5c59cf818f86cb7d4ade264

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 463.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9741e58948fd82f2a6afe067d490152c4bb06dedf221a737d506064f38379ef6
MD5 325280f3da024b5687f42ad135dc7809
BLAKE2b-256 fe05f09ff4205039da10c0a9af406621620cf4ea900dec1c3fb85e9d57fe119c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16750aed2d9dc76c51aa285648d754bec4fa9b6aec31f1e1313b95172078edfe
MD5 16d8b7610b28e653badd1ad5fb5efa24
BLAKE2b-256 f8f0d3a5f73939054c60f185781276fb5c590ed7635120eef79bd298255bc14b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb54cb336c84cf0d5c32452a59ec404439707aad0cce50a7ae8c3056f8f2185e
MD5 14fb8e1dbc9f5f03b9a8cfe4bc078b94
BLAKE2b-256 d698a5150c8c47e0ce2fac881ef8f2f8f135300021f5db06150787f682a0ca2d

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 193bec2c50844024155477bd72a3fd7ef12044578f03b8afd7bbc4c33ca05fd9
MD5 07759d5b90e894d2830eec03f057bb0e
BLAKE2b-256 5d1bcf75972ac1be75d28d58cd12672a5d64fc08eb58476b1b0a8c9a46f7be19

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6e22baa37630f5cdc0c634d7046eeb4a31b53914611f4a5bdd1bf53f336c21f2
MD5 fa72c20b0c111818c96bba8faeb793c3
BLAKE2b-256 b2ebfd1315b4e87b3c1311f9c390a770e7a605113095924f8bb2a11af74c6061

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 841e87ac08dc7497a3cc738fce188d15140fa800d101c64b1bb8e8fd555c32ae
MD5 77ebf9d0642c78ebd056be1b4d616643
BLAKE2b-256 020136a8233149d2500b06a90cb22165bb408499bcd1e8b6129f424304b87055

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 979073e206e6bfe443e4fd6fd66b4b42bc202d657a71416b679b24a2ec248466
MD5 410f3ec7ed9b182e024c27b6700c502a
BLAKE2b-256 630628d63c8b39229147b4f91115409824acdb03e217b1e4274a6097a2ae96be

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 463.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f7a27c31f51bd0ff4aa9bb58125d3168ca66119f4d7144cff067081225b77a98
MD5 ffa775cc1a99068b399fafa2bfcbc848
BLAKE2b-256 dd362db43652d358b47fdf5549ea6efebc607869ec935c93309c4750c0a3dc00

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23dda3fe6cd062d7eca28250dbae3b9e456019c5d979bad501b68f09706dec08
MD5 4cfe2396e06481226b8a8ef730f15e16
BLAKE2b-256 85727d4f4289b1f3bb0cabeeb2292ce582ad580d35340f96e549afed09ea2a05

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ca118d8adba2b3276c8439bf495ba2237d00c17f0df9c1caea841dd4cee8bbc
MD5 3f23982737b84ea01775b69981ed1911
BLAKE2b-256 decbcad9f911a2c137008ee3d3ac18c439aa2142acefe95e7fab2e7610276444

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ae2a33071a40b86c5034740a9d90f05321b416230bf459b11c7cf641d8fbb62
MD5 bb20d1fb7fe5965908e22f8a163496b7
BLAKE2b-256 347b68fc923f4e8c011441f8f56cdde59495bfc3ed3f700f08fcb9c214d162f0

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b054eda591c244ad959978516c28f698109bb7c139226ac069361c4a12ce649a
MD5 5a445dbf82e76a4d5179d0934e6c322d
BLAKE2b-256 3b3dbae856aa8ab0f224f192acd13c1946f27d323b08765a8d930b9aed2331f1

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88c26db27649011d18a098e2397621e00e9196e0c64458079d1d909a5fbc8798
MD5 7e3e30f5af287da171e74c6fc0a02765
BLAKE2b-256 7b9cc5fbf92b9334eecf1f8e1f4c99f7e690e510a6a3d80da72119660383a5e7

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 573.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95078fd733bfe3cbed9827516b3e70dbc88818bd35b6e50fae6aed0cf7159545
MD5 7a347da82e46e22b5b67f546455f87af
BLAKE2b-256 36d89934049965c2f6b70b0f962fabf0781544f1ebe3a061546bbe89e79eae12

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 463.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a3c3854389ba2ddbfd530e0d0b86f3d782b4a566238d3e8099e5786d4ea18d38
MD5 c7b25388f79a34b05a59adc07c9d94da
BLAKE2b-256 73317c981898a662b5f56762e9cbc4738f33762cfa6a5ee52a74e83a17c8376d

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad7db9410b670a4618c7d9d026f6b9f6c136136b46f9e12489dd2496a1e21898
MD5 5be346a5e781b3b29001c8d6d7c85b0b
BLAKE2b-256 1d0a4544ed1d42a6394f05b008db586c76923d74f32e0ac07c5bee281eb0d97b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3a67ebaf25f13387a40be7c13d008b515832a44f8e21961d247aec456d94b2a8
MD5 ec431990833a52622033e7aeae19baa0
BLAKE2b-256 f77e5ae846e19b1f8eb5d39c171b5d3b8969d2c71c849c15f47cf05667840d31

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bfdccd027f0ee51618056c5b40be00d6e51020202e706d2aac3d7ac969b1b55a
MD5 c79990b9e4abe130c449266c342d7c73
BLAKE2b-256 97123e131fc8b724484033549a56ae6f31b2b9affcf71759f5a49029862d8cb4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c130b2f24a353dc201dc1df4c802da15334290b92a310754b8859b40121dc40
MD5 4bcdc8ceb98f1e1a00ba551775a88b10
BLAKE2b-256 77ea90e89d83ce6b11ebc25ccca600cab074385712ead9c5c0e02d0758a2f8e4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b55dea4fd9c30ce6ab5571d0980a01a849c02aca509025cef120afe22e341770
MD5 e29b66d925ba9d580107c184049e4fff
BLAKE2b-256 08a06941e3a22993aa1db9684b7a28406d171bda5b2bfd31203e2b666161fe16

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 572.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 11d4b151b8780b81951d3bcdb9a2a746d4371213f27044149b20851cfc60757f
MD5 f7c516066d1aae74c84eaab2c0940593
BLAKE2b-256 51a0a49b8a68db1bd7fa3612a8f7b06761a74134a4ef85be9421abf259afc933

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp37-cp37m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 463.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8bd58680d7895e27dbe309534df0657b5226d07256373cc1eb135a5cecb3ba72
MD5 fc3cd98e5c28fc83efa900fe15593060
BLAKE2b-256 f8eeabbc021ea049412f4e886d5a05600e49b5de6daf1aef66ff3c20d3ee1995

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 666407c5cef0fd7aa6941fb6a65b34437242f89dea8076f2bd60fbb3590cf43c
MD5 e978ab12d6643b99df160fd5aa23f393
BLAKE2b-256 8364435d269315f96e6143146f329c13ed425ddb11b9d16655092101f6d7882b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ebc186a995b70365146fb0598b1e496f981640d9d40fd9abbb63bd73d6f30ae8
MD5 0512f874241e0a4c55361e542648edba
BLAKE2b-256 39639acbaec372f4e511f74b5609c66454804cb9c8b0a25aebe31c0d5cbb0860

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14a8f3ccf19473be851383e9e01f6e902b925250f664f4872a6660a30590e5ea
MD5 c65ff448094a73d5c269810edeaed7d4
BLAKE2b-256 a9c9257d63b683d2244845b0c3b21ce338c4e7b31b20cea91da63805a541ee0c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 582.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 921b0e402f22d71f981d79269063e4afb6089c6fbdba82443b7aee216236538d
MD5 bd5912b8739575bba771a97f1bab1768
BLAKE2b-256 c352b070821211adbb28709bee4e8a7b24364b72d7814d050b2b8bcaa40383d8

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp36-cp36m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.10-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 470.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for swiglpk-5.0.10-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b81c8e232d70f2f8f297ce4acb3f9abc86a5f8369158e7284c8e5d35c057aba6
MD5 b12ccd8ad1097cf033dd28d2fc0c9037
BLAKE2b-256 44f71a6f2c88cf9dfb751e51673b6d46bf2f1b96c3ccb8d9f22a32944fa0325b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2587fa19af29a00daa6993c81de9eb4925224dfbed25a76a449caef51d1b023
MD5 61ee24ccfdfd9861953be40b643a16bb
BLAKE2b-256 0f05200343439aed68162ad5bcbaa05d43a3ba0529f34fa58cba8d8a84a946e7

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e526b9e7f40b4d3776e917d495070569fac9f225be7009222ab295d50bbef154
MD5 b9cbec5404e600577d21694ff47f1200
BLAKE2b-256 f5b0477e9b33a2c8cf0fec5f6686d9adf06a8aa2bb556c37b92eed642fe328d0

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.10-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for swiglpk-5.0.10-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78c2a5cad1645a348989b7dc57019313655d9ed060a17451fdb66893fc15b1a8
MD5 9e2aca386d965e17fb41a6af11d23c6a
BLAKE2b-256 6e2d402157e965dc7868c4b05bcef12cf5db0efae491c4ab477b90836f653d63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page