Fast symbolic computation, code generation, and nonlinear optimization for robotics
Project description
SymForce is a fast symbolic computation and code generation library for robotics applications like computer vision, state estimation, motion planning, and controls. It combines the development speed and flexibility of symbolic mathematics with the performance of autogenerated, highly optimized code in C++ or any target runtime language. SymForce contains three independently useful systems:

Symbolic Toolkit  builds on the SymPy API to provide rigorous geometric and camera types, lie group calculus, singularity handling, and tools to model complex problems

Code Generator  transforms symbolic expressions into blazingfast, branchless code with clean APIs and minimal dependencies, with a template system to target any language

Optimization Library  a fast tangentspace optimization library based on factor graphs, with a highly optimized implementation for realtime robotics applications
SymForce automatically computes tangent space Jacobians, eliminating the need for any bugprone handwritten derivatives. Generated functions can be directly used as factors in our nonlinear optimizer. This workflow enables faster runtime functions, faster development time, and fewer lines of handwritten code versus alternative methods.
SymForce is developed and maintained by Skydio. It is used in production to accelerate tasks like SLAM, bundle adjustment, calibration, and sparse nonlinear MPC for autonomous robots at scale.
Features:
 Symbolic implementations of geometry and camera types with Lie group operations
 Code generation of fast native runtime code from symbolic expressions, reducing duplication and minimizing bugs
 Novel tools to compute fast and correct tangentspace jacobians for any expression, avoiding all handwritten derivatives
 Strategies for flattening computation and leveraging sparsity that can yield 10x speedups over standard autodiff
 A fast tangentspace optimization library in C++ and Python based on factor graphs
 Rapid prototyping and analysis of complex problems with symbolic math, with a seamless workflow into production use
 Embeddedfriendly C++ generation of templated Eigen code with zero dynamic memory allocation
 Highly performant, modular, tested, and extensible code
Read the paper: https://arxiv.org/abs/2204.07889
SymForce was published to RSS 2022. Please cite it as follows:
@inproceedings{MartirosRSS22,
author = {Hayk Martiros AND Aaron Miller AND Nathan Bucki AND Bradley Solliday AND Ryan Kennedy AND Jack Zhu AND Tung Dang AND Dominic Pattison AND Harrison Zheng AND Teo Tomic AND Peter Henry AND Gareth Cross AND Josiah VanderMey AND Alvin Sun AND Samuel Wang AND Kristen Holtz},
title = {{SymForce: Symbolic Computation and Code Generation for Robotics}},
booktitle = {Proceedings of Robotics: Science and Systems},
year = {2022},
doi = {10.15607/RSS.2022.XVIII.041}
}
Install
Install with pip:
pip install symforce
Verify the installation in Python:
>>> import symforce.symbolic as sf
>>> sf.Rot3()
This installs precompiled C++ components of SymForce on Linux and Mac using pip wheels, but does not include C++ headers. If you want to compile against C++ SymForce types (like sym::Optimizer
), you currently need to build from source.
Tutorial
Let's walk through a simple example of modeling and solving an optimization problem with SymForce. In this example a robot moves through a 2D plane and the goal is to estimate its pose at multiple time steps given noisy measurements.
The robot measures:
 the distance it traveled from an odometry sensor
 relative bearing angles to known landmarks in the scene
The robot's heading angle is defined counterclockwise from the xaxis, and its relative bearing measurements are defined from the robot's forward direction:
Explore the math
Import the SymForce symbolic API, which contains the augmented SymPy API, as well as geometry and camera types:
import symforce.symbolic as sf
Create a symbolic 2D pose and landmark location. Using symbolic variables lets us explore and build up the math in a pure form.
pose = sf.Pose2(
t=sf.V2.symbolic("t"),
R=sf.Rot2.symbolic("R")
)
landmark = sf.V2.symbolic("L")
Let's transform the landmark into the local frame of the robot. We choose to represent poses as
world_T_body
, meaning that to take a landmark in the world frame and get its position in the body
frame, we do:
landmark_body = pose.inverse() * landmark
You can see that sf.Rot2
is represented internally by a complex number (𝑅𝑟𝑒, 𝑅𝑖𝑚) and we can study how it rotates the landmark 𝐿.
For exploration purposes, let's take the jacobian of the bodyframe landmark with respect to the tangent space of the Pose2
, parameterized as (𝜃, 𝑥, 𝑦):
landmark_body.jacobian(pose)
Note that even though the orientation is stored as a complex number, the tangent space is a scalar angle and SymForce understands that.
Now compute the relative bearing angle:
sf.atan2(landmark_body[1], landmark_body[0])
One important note is that atan2
is singular at (0, 0). In SymForce we handle this by placing a symbol ϵ (epsilon) that preserves the value of an expression in the limit of ϵ → 0, but allows evaluating at runtime with a very small nonzero value. Functions with singularities accept an epsilon
argument:
sf.V3.symbolic("x").norm(epsilon=sf.epsilon())
See the Epsilon Tutorial in the SymForce Docs for more information.
Build an optimization problem
We will model this problem as a factor graph and solve it with nonlinear leastsquares.
The residual function comprises of two terms  one for the bearing measurements and one for the odometry measurements. Let's formalize the math we just defined for the bearing measurements into a symbolic residual function:
def bearing_residual(
pose: sf.Pose2, landmark: sf.V2, angle: sf.Scalar, epsilon: sf.Scalar
) > sf.V1:
t_body = pose.inverse() * landmark
predicted_angle = sf.atan2(t_body[1], t_body[0], epsilon=epsilon)
return sf.V1(sf.wrap_angle(predicted_angle  angle))
This function takes in a pose and landmark variable and returns the error between the predicted bearing angle and a measured value. Note that we call sf.wrap_angle
on the angle difference to prevent wraparound effects.
The residual for distance traveled is even simpler:
def odometry_residual(
pose_a: sf.Pose2, pose_b: sf.Pose2, dist: sf.Scalar, epsilon: sf.Scalar
) > sf.V1:
return sf.V1((pose_b.t  pose_a.t).norm(epsilon=epsilon)  dist)
Now we can create Factor
objects from the residual functions and a set of keys. The keys are named strings for the function arguments, which will be accessed by name from a Values
class we later instantiate with numerical quantities.
from symforce.opt.factor import Factor
num_poses = 3
num_landmarks = 3
factors = []
# Bearing factors
for i in range(num_poses):
for j in range(num_landmarks):
factors.append(Factor(
residual=bearing_residual,
keys=[f"poses[{i}]", f"landmarks[{j}]", f"angles[{i}][{j}]", "epsilon"],
))
# Odometry factors
for i in range(num_poses  1):
factors.append(Factor(
residual=odometry_residual,
keys=[f"poses[{i}]", f"poses[{i + 1}]", f"distances[{i}]", "epsilon"],
))
Here is a visualization of the structure of this factor graph:
Solve the problem
Our goal is to find poses of the robot that minimize the residual of this factor graph, assuming the
landmark positions in the world are known. We create an
Optimizer
with these factors and tell it to only optimize the pose keys (the rest are held constant):
from symforce.opt.optimizer import Optimizer
optimizer = Optimizer(
factors=factors,
optimized_keys=[f"poses[{i}]" for i in range(num_poses)],
# So that we save more information about each iteration, to visualize later:
debug_stats=True,
)
Now we need to instantiate numerical Values
for the problem, including an initial guess for our unknown poses (just set them to identity).
import numpy as np
from symforce.values import Values
initial_values = Values(
poses=[sf.Pose2.identity()] * num_poses,
landmarks=[sf.V2(2, 2), sf.V2(1, 3), sf.V2(5, 2)],
distances=[1.7, 1.4],
angles=np.deg2rad([[145, 335, 55], [185, 310, 70], [215, 310, 70]]).tolist(),
epsilon=sf.numeric_epsilon,
)
Now run the optimization! This returns an Optimizer.Result
object that contains the optimized values, error statistics, and periteration debug stats (if enabled).
result = optimizer.optimize(initial_values)
Let's visualize what the optimizer did. The orange circles represent the fixed landmarks, the blue circles represent the robot, and the dotted lines represent the bearing measurements.
from symforce.examples.robot_2d_localization.plotting import plot_solution
plot_solution(optimizer, result)
All of the code for this example can also be found in symforce/examples/robot_2d_localization
.
Symbolic vs Numerical Types
SymForce provides sym
packages with runtime code for geometry and camera types that are generated from its symbolic geo
and cam
packages. As such, there are multiple versions of a class like Pose3
and it can be a common source of confusion.
The canonical symbolic class sf.Pose3
lives in the symforce
package:
sf.Pose3.identity()
The autogenerated Python runtime class sym.Pose3
lives in the sym
package:
import sym
sym.Pose3.identity()
The autogenerated C++ runtime class sym::Pose3
lives in the sym::
namespace:
sym::Pose3<double>::Identity()
The matrix type for symbolic code is sf.Matrix
, for generated Python is numpy.ndarray
, and for C++ is Eigen::Matrix
.
The symbolic classes can also handle numerical values, but will be dramatically slower than the generated classes. The symbolic classes must be used when defining functions for codegen and optimization. Generated functions always accept the runtime types.
The Codegen
or Factor
objects require symbolic types and functions to do math and generate code. However, once code is generated, numerical types should be used when invoking generated functions and in the initial values when calling the Optimizer
.
As a convenience, the Python Optimizer
class can accept symbolic types in its Values
and convert to numerical types before invoking generated functions. This is done in the tutorial example for simplicity.
Generate runtime C++ code
Let's look under the hood to understand how that optimization worked. For each factor, SymForce introspects the form of the symbolic function, passes through symbolic inputs to build an output expression, automatically computes tangentspace jacobians of those output expressions wrt the optimized variables, and generates fast runtime code for them.
The Codegen
class is the central tool for generating runtime code from symbolic expressions. In this case, we pass it the bearing residual function and configure it to generate C++ code:
from symforce.codegen import Codegen, CppConfig
codegen = Codegen.function(bearing_residual, config=CppConfig())
We can then create another Codegen
object that computes a GaussNewton linearization from this Codegen object. It does this by introspecting and symbolically differentiating the given arguments:
codegen_linearization = codegen.with_linearization(
which_args=["pose"]
)
Generate a C++ function that computes the linearization wrt the pose argument:
metadata = codegen_linearization.generate_function()
print(open(metadata.generated_files[0]).read())
This C++ code depends only on Eigen and computes the results in a single flat function that shares all common subexpressions:
#pragma once
#include <Eigen/Dense>
#include <sym/pose2.h>
namespace sym {
/**
* This function was autogenerated from a symbolic function. Do not modify by hand.
*
* Symbolic function: bearing_residual
*
* Args:
* pose: Pose2
* landmark: Matrix21
* angle: Scalar
* epsilon: Scalar
*
* Outputs:
* res: Matrix11
* jacobian: (1x3) jacobian of res wrt arg pose (3)
* hessian: (3x3) GaussNewton hessian for arg pose (3)
* rhs: (3x1) GaussNewton rhs for arg pose (3)
*/
template <typename Scalar>
void BearingFactor(const sym::Pose2<Scalar>& pose, const Eigen::Matrix<Scalar, 2, 1>& landmark,
const Scalar angle, const Scalar epsilon,
Eigen::Matrix<Scalar, 1, 1>* const res = nullptr,
Eigen::Matrix<Scalar, 1, 3>* const jacobian = nullptr,
Eigen::Matrix<Scalar, 3, 3>* const hessian = nullptr,
Eigen::Matrix<Scalar, 3, 1>* const rhs = nullptr) {
// Total ops: 66
// Input arrays
const Eigen::Matrix<Scalar, 4, 1>& _pose = pose.Data();
// Intermediate terms (24)
const Scalar _tmp0 = _pose[1] * _pose[2];
const Scalar _tmp1 = _pose[0] * _pose[3];
const Scalar _tmp2 = _pose[0] * landmark(1, 0)  _pose[1] * landmark(0, 0);
const Scalar _tmp3 = _tmp0  _tmp1 + _tmp2;
const Scalar _tmp4 = _pose[0] * _pose[2] + _pose[1] * _pose[3];
const Scalar _tmp5 = _pose[1] * landmark(1, 0);
const Scalar _tmp6 = _pose[0] * landmark(0, 0);
const Scalar _tmp7 = _tmp4 + _tmp5 + _tmp6;
const Scalar _tmp8 = _tmp7 + epsilon * ((((_tmp7) > 0)  ((_tmp7) < 0)) + Scalar(0.5));
const Scalar _tmp9 = angle + std::atan2(_tmp3, _tmp8);
const Scalar _tmp10 =
_tmp9  2 * Scalar(M_PI) *
std::floor((Scalar(1) / Scalar(2)) * (_tmp9 + Scalar(M_PI)) / Scalar(M_PI));
const Scalar _tmp11 = Scalar(1.0) / (_tmp8);
const Scalar _tmp12 = std::pow(_tmp8, Scalar(2));
const Scalar _tmp13 = _tmp3 / _tmp12;
const Scalar _tmp14 = _tmp11 * (_tmp4  _tmp5  _tmp6)  _tmp13 * (_tmp0  _tmp1 + _tmp2);
const Scalar _tmp15 = _tmp12 + std::pow(_tmp3, Scalar(2));
const Scalar _tmp16 = _tmp12 / _tmp15;
const Scalar _tmp17 = _tmp14 * _tmp16;
const Scalar _tmp18 = _pose[0] * _tmp13 + _pose[1] * _tmp11;
const Scalar _tmp19 = _tmp16 * _tmp18;
const Scalar _tmp20 = _pose[0] * _tmp11 + _pose[1] * _tmp13;
const Scalar _tmp21 = _tmp16 * _tmp20;
const Scalar _tmp22 = std::pow(_tmp8, Scalar(4)) / std::pow(_tmp15, Scalar(2));
const Scalar _tmp23 = _tmp18 * _tmp22;
// Output terms (4)
if (res != nullptr) {
Eigen::Matrix<Scalar, 1, 1>& _res = (*res);
_res(0, 0) = _tmp10;
}
if (jacobian != nullptr) {
Eigen::Matrix<Scalar, 1, 3>& _jacobian = (*jacobian);
_jacobian(0, 0) = _tmp17;
_jacobian(0, 1) = _tmp19;
_jacobian(0, 2) = _tmp21;
}
if (hessian != nullptr) {
Eigen::Matrix<Scalar, 3, 3>& _hessian = (*hessian);
_hessian(0, 0) = std::pow(_tmp14, Scalar(2)) * _tmp22;
_hessian(0, 1) = 0;
_hessian(0, 2) = 0;
_hessian(1, 0) = _tmp14 * _tmp23;
_hessian(1, 1) = std::pow(_tmp18, Scalar(2)) * _tmp22;
_hessian(1, 2) = 0;
_hessian(2, 0) = _tmp14 * _tmp20 * _tmp22;
_hessian(2, 1) = _tmp20 * _tmp23;
_hessian(2, 2) = std::pow(_tmp20, Scalar(2)) * _tmp22;
}
if (rhs != nullptr) {
Eigen::Matrix<Scalar, 3, 1>& _rhs = (*rhs);
_rhs(0, 0) = _tmp10 * _tmp17;
_rhs(1, 0) = _tmp10 * _tmp19;
_rhs(2, 0) = _tmp10 * _tmp21;
}
}
} // namespace sym
SymForce can also generate runtime Python code that depends only on numpy
.
The code generation system is written with pluggable jinja templates to minimize the work to add new backend languages. Some of our top candidates to add are TypeScript, CUDA, and PyTorch.
Optimize from C++
Now that we can generate C++ functions for each residual function, we can also run the optimization purely from C++ to get Python entirely out of the loop for production use.
const int num_poses = 3;
const int num_landmarks = 3;
std::vector<sym::Factor<double>> factors;
// Bearing factors
for (int i = 0; i < num_poses; ++i) {
for (int j = 0; j < num_landmarks; ++j) {
factors.push_back(sym::Factor<double>::Hessian(
sym::BearingFactor<double>,
{{'P', i}, {'L', j}, {'a', i, j}, {'e'}}, // keys
{{'P', i}} // keys to optimize
));
}
}
// Odometry factors
for (int i = 0; i < num_poses  1; ++i) {
factors.push_back(sym::Factor<double>::Hessian(
sym::OdometryFactor<double>,
{{'P', i}, {'P', i + 1}, {'d', i}, {'e'}}, // keys
{{'P', i}, {'P', i + 1}} // keys to optimize
));
}
const auto params = sym::DefaultOptimizerParams();
sym::Optimizer<double> optimizer(
params,
factors,
sym::kDefaultEpsilon<double>
);
sym::Values<double> values;
for (int i = 0; i < num_poses; ++i) {
values.Set({'P', i}, sym::Pose2d::Identity());
}
// Set additional values
values.Set({'L', 0}, Eigen::Vector2d(2, 2));
values.Set({'L', 1}, Eigen::Vector2d(1, 3));
values.Set({'L', 2}, Eigen::Vector2d(5, 2));
values.Set({'d', 0}, 1.7);
values.Set({'d', 1}, 1.4);
const std::array<std::array<double, 3>, 3> angles = {
{{55, 245, 35}, {95, 220, 20}, {125, 220, 20}}
};
for (int i = 0; i < angles.size(); ++i) {
for (int j = 0; j < angles[0].size(); ++j) {
values.Set({'a', i, j}, angles[i][j] * M_PI / 180);
}
}
values.Set('e', sym::kDefaultEpsilond);
// Optimize!
const auto stats = optimizer.Optimize(&values);
std::cout << "Optimized values:" << values << std::endl;
This tutorial shows the central workflow in SymForce for creating symbolic expressions, generating code, and optimizing. This approach works well for a wide range of complex problems in robotics, computer vision, and applied science.
However, each piece may also be used independently. The optimization machinery can work with handwritten functions, and the symbolic math and code generation is useful outside of any optimization context.
To learn more, visit the SymForce tutorials here.
Build from Source
For best results, you should build from the latest tagged release. You can also build from main
, or from another branch, but everything is less guaranteed to work.
SymForce requires Python 3.8 or later. The build is currently tested on Linux and macOS, SymForce on Windows is untested (see #145). We strongly suggest creating a virtual python environment.
Install the gmp
package with one of:
apt install libgmpdev # Ubuntu
brew install gmp # Mac
conda install c condaforge gmp # Conda
SymForce contains both C++ and Python code. The C++ code is built using CMake. You can build the package either by calling pip, or by calling CMake directly. If building with pip
, this will call CMake under the hood, and run the same CMake build for the C++ components.
If you encounter build issues, please file an issue.
Build with pip
If you just want to build and install SymForce without repeatedly modifying the source, the recommended way to do this is with pip. From the symforce directory:
pip install .
If you're modifying the SymForce Python sources, you can do an editable install instead. This will let you modify the Python components of SymForce without reinstalling. If you're going to repeatedly modify the C++ sources, you should instead build with CMake directly as described below. From the symforce directory:
pip install e .
You should then verify your installation.
Note: pip install .
will not install pinned versions of SymForce's dependencies, it'll install any compatible versions. It also won't install all packages required to run all of the SymForce tests and build all of the targets (e.g. building the docs or running the linters). If you want all packages required for that, you should pip install .[dev]
instead (or one of the other groups of extra requirements in our setup.py
). If you additionally want pinned versions of our dependencies, which are the exact versions guaranteed by CI to pass all of our tests, you can install them from pip install r dev_requirements.txt
.
Note: Editable installs as root with the system python on Ubuntu (and other Debian derivatives) are broken on setuptools<64.0.0
. This is a bug in Debian, not something in SymForce that we can fix. If this is your situation, either use a virtual environment, upgrade setuptools to a version >=64.0.0
, or use a different installation method.
Build with CMake
If you'll be modifying the C++ parts of SymForce, you should build with CMake directly instead  this method will not install SymForce into your Python environment, so you'll need to add it to your PYTHONPATH separately.
Install python requirements:
pip install r dev_requirements.txt
Build SymForce (requires C++14 or later):
mkdir build
cd build
cmake ..
make j $(nproc)
You'll then need to add SymForce (along with gen/python
and third_party/skymarshal
within symforce and lcmtypes/python2.7
within the build directory) to your PYTHONPATH in order to use them, for example:
export PYTHONPATH="$PYTHONPATH:/path/to/symforce:/path/to/symforce/build/lcmtypes/python2.7:/path/to/symforce/gen/python:/path/to/symforce/third_party/skymarshal"
Verify your installation:
>>> import symforce
>>> symforce.get_symbolic_api()
'symengine'
>>> from symforce import cc_sym
If you see 'sympy'
here instead of 'symengine'
, or can't import cc_sym
, your installation is probably broken and you should submit an issue.
License
SymForce is released under the Apache 2.0 license.
See the LICENSE file for more information.
Sponsors
SymForce is developed and maintained by Skydio. It is released as a free and opensource library for the robotics community.
Contributing
While SymForce already powers tens of thousands of robots at Skydio, the public library is new and we are releasing it in beta stage. This is just the beginning, and we are excited for engagement from the community. Thank you for helping us develop SymForce! The best way to get started is to file issues for bugs or desired features.
There are many features we're excited to add to SymForce and would love to see contributed by the community. Most are outlined in the issues, but some major desired contributions are:
 Add more backend languages, such as TypeScript, CUDA, GLSL/HLSL, and PyTorch
 Easily swap in approximate or architecturespecific implementations of primitive functions, such as trig functions
 Support for WebAssembly compilation
 More Lie group types, in particular Sim(3)
 Support for constraints in our optimizer
 Integration with ISPC
Project details
Release history Release notifications  RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Built Distributions
Hashes for symforce0.6.0cp310cp310manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm  Hash digest  

SHA256  3450ee5f4834a5c394a196aff4bc44f99b6d09718606ecf4e142924ecb258c94 

MD5  d6cae1e24a6acd38c5e4850a2ddfc2ac 

BLAKE2256  d59e3d80249b6e8e2caf63bf979832090d01e63322cfce8dde9c1838fe243ddb 
Hashes for symforce0.6.0cp310cp310macosx_11_0_arm64.whl
Algorithm  Hash digest  

SHA256  bdac04e28b79fe4f304e2c0765edfb3bc35f4e50679802573d75b2640ca465ba 

MD5  7643956a2c19c439ea28d721cefdcfbd 

BLAKE2256  d370b1ba50c51b5bc41e6156a7f9ff3f0432668cab0c1c9cd9e4d776d1db2cd1 
Hashes for symforce0.6.0cp310cp310macosx_10_9_x86_64.whl
Algorithm  Hash digest  

SHA256  806bf9b8bc7943be29685cc01fedb1a3879c9ba689cfe081ba1e74bf718a981c 

MD5  25b9519148a23278e69721d16407bfd3 

BLAKE2256  fbfda3c649269b6d7eed832db2cf654ba3fe661f64e1f1e45236d1f8517a7065 
Hashes for symforce0.6.0cp39cp39manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm  Hash digest  

SHA256  9371c596f8a317c1ae4020f9a3bd7e62a630092691fdf9914765a93868ca2f26 

MD5  d1db6208a608a5fac169af38242c1372 

BLAKE2256  5520e934675b5d3ab1deb85e0ba16caf339db4fd61e58633d9efd3b28e911958 
Hashes for symforce0.6.0cp39cp39macosx_11_0_arm64.whl
Algorithm  Hash digest  

SHA256  eec56b4b9186a15f31de9fcf4b0d1c688a87db750f024eb2bc2415e2447d47e6 

MD5  2638e851fa69cc7709bb07342bd4ff3b 

BLAKE2256  154d4f941b29d076943b95b81cfa6c16f7683202491f1a5f50093b0e6afb194e 
Hashes for symforce0.6.0cp39cp39macosx_10_9_x86_64.whl
Algorithm  Hash digest  

SHA256  3f252119e8017646ddb4844f6eda6caaae906830d466afc5044333c130be647b 

MD5  75fce4de62480d23ec83241fa2b20a08 

BLAKE2256  6ae8563ab5fa3ff43beda5a99407c3b4275595f83d5ce96a598d1f7b23bb6daf 
Hashes for symforce0.6.0cp38cp38manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm  Hash digest  

SHA256  f951be208d8ef060ae2cc765d29c70dd32a2dc5148f1ae8f2602e8c5232fb803 

MD5  1ca5ca3a6fbe48a373e455a1f2faf9de 

BLAKE2256  57c3a95e8a90593c64ea38a1f8749887f3474632a3eae7124931e94383eaf2f3 
Hashes for symforce0.6.0cp38cp38macosx_11_0_arm64.whl
Algorithm  Hash digest  

SHA256  091d65573e0fc2ce23e4943d0c76a93aaeaa2b611ae45c3e883427af6f49908f 

MD5  75d4daf6d793dd5044088a0c513de77c 

BLAKE2256  b892e7e3407c18cb7cbb132074456ea5ad0568ad3129b488179215aa1083d99d 
Hashes for symforce0.6.0cp38cp38macosx_10_9_x86_64.whl
Algorithm  Hash digest  

SHA256  1ec57e4b5f067e604ac5144ac4f148fd31fb409bb813b60e0be2b0ec4ce8cfa3 

MD5  07767baf8d745ed633a7d04870a5ae31 

BLAKE2256  d68da88a5c00536a115a063fa512c9d6021d84da82d6b17abd870e9778dd532e 