Symbolic Expressions in PyTorch
Project description
Fast, optimisable, symbolic expressions in PyTorch.
>>> from symtorch import symtorchify
>>> f = symtorchify("x**2 + 2.5*x + 1.7")
>>> f
x²+2.5x+1.7
>>> f({"x": torch.tensor(2.0)})
tensor([10.7000], grad_fn=<AddBackward0>)
Installation
pip install symtorch
Features
- Symbolic expressions with PyTorch integration
- Automatic differentiation and optimization
- Compatible with TorchScript
- Easy saving and loading via PyTorch's native mechanisms
- Seamless integration with existing PyTorch models
For detailed documentation and examples, visit our Documentation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
symtorch-0.2.0.tar.gz
(10.4 kB
view details)
Built Distribution
File details
Details for the file symtorch-0.2.0.tar.gz
.
File metadata
- Download URL: symtorch-0.2.0.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dfa1336e633b9d61633718b526678285d085b6a4ba09f6efd850db3c019f541 |
|
MD5 | 20ad4ec146d26bd659e025b29715fcb8 |
|
BLAKE2b-256 | eb22de73c68ff512106bb47028d75305ca9ed6f623601a612066bef77f454a60 |
File details
Details for the file symtorch-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: symtorch-0.2.0-py3-none-any.whl
- Upload date:
- Size: 8.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 487b2f6f281509a32dc5f5734d2a74844c61705330db55c3aeb1567d620684d5 |
|
MD5 | 97ffb67f402739a2d7e5d3e50f200986 |
|
BLAKE2b-256 | 21cf8ee7e0aeca1ede77176eb59cbf09ba87b8787f10455ed2bebcae59e67024 |