Skip to main content

Tabulated Correlation Functions

Project description

TabCorr: Tabulated Correlation Functions

PyPI Version License: MIT Language: Python

This Python module provides extremely efficient and precise calculations of galaxy correlation functions in halotools using tabulated values. It is specifically intended for Markov chain monte carlo (MCMC) exploration of the galaxy-halo connection. It implements the method described in Zheng & Guo (2016) of tabulating correlation functions that only need to be convolved with the mean halo occupation to obtain the full correlation function of galaxies.

Installation

The package can be installed via pip.

pip install tabcorr

Usage

The following code demonstrates the basic usage of TabCorr.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from halotools.empirical_models import PrebuiltHodModelFactory
from halotools.mock_observables import wp
from halotools.sim_manager import CachedHaloCatalog
from tabcorr import TabCorr

# First, we tabulate the correlation functions in the halo catalog. Note that
# by default, TabCorr applies redshift-space distortions (RSDs) in the
# tabulation of correlation functions.
rp_bins = np.logspace(-1, 1, 20)

halocat = CachedHaloCatalog(simname='bolplanck')
halotab = TabCorr.tabulate(halocat, wp, rp_bins, pi_max=40, verbose=True,
                           num_threads=4)

# We can save the result for later use.
halotab.write('bolplanck_wp.hdf5')

# We could read it in like this. Thus, we can skip the previous steps in the
# future.
halotab = TabCorr.read('bolplanck_wp.hdf5')

# Now, we're ready to calculate correlation functions for a specific model.
model = PrebuiltHodModelFactory('zheng07', threshold=-18)

rp_ave = 0.5 * (rp_bins[1:] + rp_bins[:-1])

ngal, wp = halotab.predict(model)
plt.plot(rp_ave, wp, label='total')

ngal, wp = halotab.predict(model, separate_gal_type=True)
for key in wp.keys():
    plt.plot(rp_ave, wp[key], label=key, ls='--')

plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$r_{\rm p} \ [h^{-1} \ \mathrm{Mpc}]$')
plt.ylabel(r'$w_{\rm p} \ [h^{-1} \ \mathrm{Mpc}]$')
plt.legend(loc='lower left', frameon=False)
plt.tight_layout(pad=0.3)
plt.savefig('wp_decomposition.png', dpi=300)
plt.close()

# Studying how the clustering predictions change as a function of galaxy-halo
# parameters is straightforward.
sm = mpl.cm.ScalarMappable(
    cmap=mpl.cm.viridis, norm=mpl.colors.Normalize(vmin=12.0, vmax=12.8))

for logm1 in np.linspace(12.0, 12.8, 1000):
    model.param_dict['logM1'] = logm1
    ngal, wp = halotab.predict(model)
    plt.plot(rp_ave, wp, color=sm.to_rgba(logm1), lw=0.1)

cb = plt.colorbar(sm, ax=plt.gca())
cb.set_label(r'$\log M_1$')
plt.xscale('log')
plt.yscale('log')
plt.xlabel(r'$r_{\rm p} \ [h^{-1} \ \mathrm{Mpc}]$')
plt.ylabel(r'$w_{\rm p} \ [h^{-1} \ \mathrm{Mpc}]$')
plt.tight_layout(pad=0.3)
plt.savefig('wp_vs_logm1.png', dpi=300)
plt.close()

Author

Johannes Ulf Lange

Citations

The method implemented in TabCorr has first been described in earlier work, particularly Neistein et al. (2011) and Zheng & Guo (2016). In Lange et al. (2019a), we developed a generalized framework for this method that also takes into account assembly bias. Finally, a good reference for the TabCorr code itself is Lange et al. (2019b).

License

TabCorr is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tabcorr-1.2.0.tar.gz (26.3 kB view details)

Uploaded Source

Built Distribution

tabcorr-1.2.0-py2.py3-none-any.whl (26.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file tabcorr-1.2.0.tar.gz.

File metadata

  • Download URL: tabcorr-1.2.0.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for tabcorr-1.2.0.tar.gz
Algorithm Hash digest
SHA256 a820f6c212dddf8670aca16eb52357b8df89fa2a488447e598eb951d159003fd
MD5 c041da894aef85b88f13e9f0531aa409
BLAKE2b-256 eccdef3ad7100e3043b5f5d392f7921f24c275b060cd481f2d6c74a39e8ac940

See more details on using hashes here.

File details

Details for the file tabcorr-1.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: tabcorr-1.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.32.3

File hashes

Hashes for tabcorr-1.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 12e9a435ca861825063511be020cd1be38e5bc766fab7b69b3d3150d37e4a5fd
MD5 300189d5f761cc0db2a1dacef596a1b1
BLAKE2b-256 7e6da7ac86d87eb53c9c604443fe76edf027e880be7be852016d5884c33bfba8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page