Skip to main content

Torch autodiff DFT-D4 implementation

Project description

Python Versions Release PyPI LGPL-3.0 CI Documentation Status Coverage pre-commit.ci status

Implementation of the DFT-D4 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D4 dispersion model, see

  • E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147, 034112. DOI: 10.1063/1.4993215

  • E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122. DOI: 10.1063/1.5090222

  • E. Caldeweyher, J.-M. Mewes, S. Ehlert and S. Grimme, Phys. Chem. Chem. Phys., 2020, 22, 8499-8512. DOI: 10.1039/D0CP00502A

For alternative implementations, also check out

dftd4:

Implementation of the DFT-D4 dispersion model in Fortran with Python bindings.

cpp-d4:

Implementation of the DFT-D4 dispersion model in C++.

Installation

pip

tad-dftd4 can easily be installed with pip.

pip install tad-dftd4

From source

This project is hosted on GitHub at dftd4/tad-dftd4. Obtain the source by cloning the repository with

git clone https://github.com/dftd4/tad-dftd4
cd tad-dftd4

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults coverage mypy pre-commit pylint tox

With pip, add the option -e and the development dependencies for installing in development mode.

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional _posargs_.

tox -- test

Examples

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd4 as d4

numbers = d4.utils.to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# total charge of the system
charge = torch.tensor(0.0)

# TPSS0-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

energy = d4.dftd4(numbers, positions, charge, param)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0020841344, -0.0018971195, -0.0018107513, -0.0018305695,
#         -0.0021737693, -0.0019484236, -0.0022788253, -0.0004080658,
#         -0.0004261866, -0.0004199839, -0.0004280768, -0.0005108935])

The next example shows the calculation of dispersion energies for a batch of structures.

import torch
import tad_dftd4 as d4

# S22 system 4: formamide dimer
numbers = d4.utils.pack((
    d4.utils.to_number("C C N N H H H H H H O O".split()),
    d4.utils.to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = d4.utils.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# total charge of both system
charge = torch.tensor([0.0, 0.0])

# TPSS0-D4-ATM parameters
param = {
    "s6": positions.new_tensor(1.0),
    "s8": positions.new_tensor(1.85897750),
    "s9": positions.new_tensor(1.0),
    "a1": positions.new_tensor(0.44286966),
    "a2": positions.new_tensor(4.60230534),
}

# calculate dispersion energy in Hartree
energy = torch.sum(d4.dftd4(numbers, positions, charge, param), -1)
torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0088341432, -0.0027013607])
print(energy[0] - 2*energy[1])
# tensor(-0.0034314217)

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_dftd4-0.0.2.tar.gz (153.8 kB view details)

Uploaded Source

Built Distribution

tad_dftd4-0.0.2-py3-none-any.whl (106.2 kB view details)

Uploaded Python 3

File details

Details for the file tad_dftd4-0.0.2.tar.gz.

File metadata

  • Download URL: tad_dftd4-0.0.2.tar.gz
  • Upload date:
  • Size: 153.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for tad_dftd4-0.0.2.tar.gz
Algorithm Hash digest
SHA256 034fb42d0639c14fa3cb30c1df331ff3ca87e1b284c549065740d9e13b007611
MD5 4a915939d606ba6c76db8ebe32346bf7
BLAKE2b-256 ae1f41b95a88a81085ae0fdd4216aea7a53187ccf5b3e7a4d4cb1943cec4018d

See more details on using hashes here.

File details

Details for the file tad_dftd4-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd4-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 106.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for tad_dftd4-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 15f7d4275aebd2786ed95ebf903ca63ccd60bbc92e3961aa9a93662b9409e888
MD5 846d012408671bc5eb14a2851e760f98
BLAKE2b-256 a17fab21af287b130f67d94f8c05658f1e3e786f38b27d5d61fcb135b9a75235

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page