Skip to main content

Torch Autodiff Utility

Project description

Python Versions Release PyPI LGPL-3.0 CI Documentation Status Coverage pre-commit.ci status

This library is a collection of utility functions that are used in PyTorch (re-)implementations of projects from the Grimme group. In particular, the tad-mctc library provides:

  • autograd functions (Jacobian, Hessian)

  • batch utility (packing, masks, …)

  • atomic data (radii, EN, example molecules, …)

  • io (reading coordinate files)

  • coordination numbers

  • safeops (autograd-safe implementations of common functions)

  • typing (base class for tensor-like behavior of arbitrary classes)

  • units

The name is inspired by the Fortran pendant “modular computation tool chain library” (mctc-lib).

Installation

pip

tad-mctc can easily be installed with pip.

pip install tad-mctc

From source

This project is hosted on GitHub at tad-mctc/tad-mctc. Obtain the source by cloning the repository with

git clone https://github.com/tad-mctc/tad-mctc
cd tad-mctc

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Install this project with pip in the environment

pip install .

The following dependencies are required

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order

With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips “large” tests. To modify this behavior, tox has to skip the optional posargs.

tox -- test

Examples

The following example shows how to calculate the coordination number used in the EEQ model for a single structure.

import torch
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# calculate EEQ coordination number
cn = mctc.ncoord.cn_eeq(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([3.0519218445, 3.0177774429, 3.0132560730, 3.0197706223,
#         3.0779352188, 3.0095663071, 1.0991339684, 0.9968624115,
#         0.9943327904, 0.9947233200, 0.9945874214, 0.9945726395])

The next example shows the calculation of the coordination number used in DFT-D4 for a batch of structures.

import torch
import tad_mctc as mctc

# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
    mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
    mctc.convert.symbol_to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = mctc.batch.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# calculate coordination number
cn = mctc.ncoord.cn_d4(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([[2.6886456013, 2.6886456013, 2.6314170361, 2.6314167976,
#          0.8594539165, 0.9231414795, 0.8605306745, 0.8605306745,
#          0.8594539165, 0.9231414795, 0.8568341732, 0.8568341732],
#         [2.6886456013, 0.8568335176, 2.6314167976, 0.8605306745,
#          0.8594532013, 0.9231414795, 0.0000000000, 0.0000000000,
#          0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000]])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is free software: you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This project is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. See the Lesser GNU General Public License for more details.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Lesser GNU General Public license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_mctc-0.0.3.tar.gz (68.6 kB view details)

Uploaded Source

Built Distribution

tad_mctc-0.0.3-py3-none-any.whl (93.3 kB view details)

Uploaded Python 3

File details

Details for the file tad_mctc-0.0.3.tar.gz.

File metadata

  • Download URL: tad_mctc-0.0.3.tar.gz
  • Upload date:
  • Size: 68.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for tad_mctc-0.0.3.tar.gz
Algorithm Hash digest
SHA256 39319c7c4f3cfc1d9ed294683d45e0ae21bc88c40ab4e570216f08938c9d1191
MD5 5060dfcaee1287660f078267a36e4a5b
BLAKE2b-256 9d5b9062492d2ac8851c66a0116cbfeb2ca0b21c01ba7524b70d5e912013460f

See more details on using hashes here.

File details

Details for the file tad_mctc-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: tad_mctc-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 93.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for tad_mctc-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 83426963ccf7bdb7255eab348c3f4ed5d483f5895045c29b9374b9add12acbe6
MD5 ad28e8fac879c67dcadb22dea2b6180f
BLAKE2b-256 d59780c568fa7a3ba2b6af92dba9bfe561493e3bf2b1d24b18b318b5b87c6a88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page