Skip to main content

No project description provided

Project description

Python compat PyPi GHA Status Coverage Documentation Status


Documentation: https://tamp.readthedocs.io/en/latest/

Source Code: https://github.com/BrianPugh/tamp


Tamp is a low-memory, DEFLATE-inspired lossless compression library intended for embedded targets.

Tamp delivers the highest data compression ratios, while using the least amount of RAM and firmware storage.

Features

  • Various language implementations available:
    • Pure Python reference:
      • tamp/__init__.py, tamp/compressor.py, tamp/decompressor.py
      • pip install tamp will use a python-bound C implementation optimized for speed.
    • Micropython:
      • Native Module (suggested micropython implementation).
        • mpy_bindings/
      • Viper.
        • tamp/__init__.py, tamp/compressor_viper.py, tamp/decompressor_viper.py
    • C library:
      • tamp/_c_src/
  • High compression ratios, low memory use, and fast.
  • Compact compression and decompression implementations.
    • Compiled C library is <4KB (compressor + decompressor).
  • Mid-stream flushing.
    • Allows for submission of messages while continuing to compress subsequent data.
  • Customizable dictionary for greater compression of small messages.
  • Convenient CLI interface.

Installation

Tamp contains 4 implementations:

  1. A reference desktop CPython implementation that is optimized for readability (and not speed).
  2. A Micropython Native Module implementation (fast).
  3. A Micropython Viper implementation (not recommended, please use Native Module).
  4. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects (very fast).

This section instructs how to install each implementation.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

MicroPython Native Module

Tamp provides pre-compiled [native modules]{.title-ref} that are easy to install, are small, and are incredibly fast.

Download the appropriate .mpy file from the release page.

  • Match the micropython version.
  • Match the architecture to the microcontroller (e.g. armv6m for a pi pico).

Rename the file to tamp.mpy and transfer it to your board. If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = "https://github.com/BrianPugh/tamp/releases/download/v1.7.0/tamp-1.7.0-mpy1.23-armv6m.mpy"

MicroPython Viper

NOT RECOMMENDED, PLEASE USE NATIVE MODULE

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.
  2. tamp/decompressor_viper.py - Required for on-device decompression.
  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn't used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller's /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help
Usage: tamp compress [ARGS] [OPTIONS]

Compress an input file or stream.

╭─ Parameters ───────────────────────────────────────────────────────────────────────────────╮
│ INPUT,--input    -i  Input file to compress. Defaults to stdin.                            │
│ OUTPUT,--output  -o  Output compressed file. Defaults to stdout.                           │
│ --window         -w  Number of bits used to represent the dictionary window. [default: 10] │
│ --literal        -l  Number of bits used to represent a literal. [default: 8]              │
╰────────────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.
  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp decompress --help
Usage: tamp decompress [ARGS] [OPTIONS]

Decompress an input file or stream.

╭─ Parameters ───────────────────────────────────────────────────────────────────────────────╮
│ INPUT,--input    -i  Input file to decompress. Defaults to stdin.                          │
│ OUTPUT,--output  -o  Output decompressed file. Defaults to stdout.                         │
╰────────────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.
  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset raw tamp zlib heatshrink
enwik8 100,000,000 51,635,633 56,205,166 56,110,394
build/silesia/dickens 10,192,446 5,546,761 6,049,169 6,155,768
build/silesia/mozilla 51,220,480 25,121,385 25,104,966 25,435,908
build/silesia/mr 9,970,564 5,027,032 4,864,734 5,442,180
build/silesia/nci 33,553,445 8,643,610 5,765,521 8,247,487
build/silesia/ooffice 6,152,192 3,814,938 4,077,277 3,994,589
build/silesia/osdb 10,085,684 8,520,835 8,625,159 8,747,527
build/silesia/reymont 6,627,202 2,847,981 2,897,661 2,910,251
build/silesia/samba 21,606,400 9,102,594 8,862,423 9,223,827
build/silesia/sao 7,251,944 6,137,755 6,506,417 6,400,926
build/silesia/webster 41,458,703 18,694,172 20,212,235 19,942,817
build/silesia/x-ray 8,474,240 7,510,606 7,351,750 8,059,723
build/silesia/xml 5,345,280 1,681,687 1,586,985 1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Compression Decompression
Tamp (1 << windowBits) (1 << windowBits)
ZLib (1 << (windowBits + 2)) + 7KB (1 << windowBits) + 7KB
Heatshrink (1 << (windowBits + 1)) (1 << (windowBits + 1))
Deflate (micropython) (1 << windowBits) (1 << windowBits)

All libraries have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here. Tamp uses significantly less memory than ZLib, and half the memory of Heatshrink.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Compression (s) Decompression (s)
Tamp (Python Reference) 109.5 76.0
Tamp (C) 16.45 0.142
ZLib 0.98 0.98
Heatshrink (with index) 6.22 0.82
Heatshrink (without index) 41.73 0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, resulting in 4x more memory-usage than Tamp. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

To give an idea of Tamp's speed on an embedded device, the following table shows compression/decompression in bytes/second of the first 100KB of enwik8 on a pi pico (rp2040) at the default 125MHz clock rate. The C benchmark does not use a filesystem nor dynamic memory allocation, so it represents the maximum speed Tamp can achieve. In all tests, a 1KB window (10 bit) was used.

Compression (bytes/s) Decompression (bytes/s)
Tamp (MicroPython Viper) 4,300 42,000
Tamp (Micropython Native Module) 12,770 644,000
Tamp (C) 28,500 1,042,524
Deflate (micropython builtin) 6,715 146,477

Tamp resulted in a 51637 byte archive, while Micropython's builtin deflate resulted in a larger, 59442 byte archive.

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico (armv6m). All libraries were compiled with -O3. Numbers reported in bytes.

Compressor Decompressor Compressor + Decompressor
Tamp (MicroPython Viper) 4429 4205 7554
Tamp (MicroPython Native) 3232 3047 5505
Tamp (C) 2008 1972 3864
Heatshrink (C) 2956 3876 6832
uzlib (C) 2355 3963 6318

Heatshrink doesn't include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

Acknowledgement

  • Thanks @BitsForPeople for the esp32-optimized compressor implementation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.8.0.tar.gz (38.4 kB view details)

Uploaded Source

Built Distributions

tamp-1.8.0-cp312-cp312-win_amd64.whl (170.8 kB view details)

Uploaded CPython 3.12Windows x86-64

tamp-1.8.0-cp312-cp312-win32.whl (153.2 kB view details)

Uploaded CPython 3.12Windows x86

tamp-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl (902.8 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

tamp-1.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl (917.8 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ ppc64le

tamp-1.8.0-cp312-cp312-musllinux_1_1_i686.whl (854.2 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

tamp-1.8.0-cp312-cp312-musllinux_1_1_aarch64.whl (891.8 kB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ ARM64

tamp-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (897.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

tamp-1.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (916.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

tamp-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (856.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

tamp-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (885.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

tamp-1.8.0-cp312-cp312-macosx_14_0_arm64.whl (175.6 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

tamp-1.8.0-cp312-cp312-macosx_13_0_x86_64.whl (184.0 kB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

tamp-1.8.0-cp311-cp311-win_amd64.whl (170.0 kB view details)

Uploaded CPython 3.11Windows x86-64

tamp-1.8.0-cp311-cp311-win32.whl (152.7 kB view details)

Uploaded CPython 3.11Windows x86

tamp-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl (891.8 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

tamp-1.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl (917.2 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ppc64le

tamp-1.8.0-cp311-cp311-musllinux_1_1_i686.whl (851.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

tamp-1.8.0-cp311-cp311-musllinux_1_1_aarch64.whl (887.1 kB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ARM64

tamp-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (887.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

tamp-1.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (919.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

tamp-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (851.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

tamp-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (883.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

tamp-1.8.0-cp311-cp311-macosx_14_0_arm64.whl (173.9 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

tamp-1.8.0-cp311-cp311-macosx_13_0_x86_64.whl (181.8 kB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

tamp-1.8.0-cp310-cp310-win_amd64.whl (169.8 kB view details)

Uploaded CPython 3.10Windows x86-64

tamp-1.8.0-cp310-cp310-win32.whl (153.4 kB view details)

Uploaded CPython 3.10Windows x86

tamp-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (836.5 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

tamp-1.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl (858.9 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ppc64le

tamp-1.8.0-cp310-cp310-musllinux_1_1_i686.whl (802.2 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

tamp-1.8.0-cp310-cp310-musllinux_1_1_aarch64.whl (830.9 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

tamp-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (810.3 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

tamp-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (858.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

tamp-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (777.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

tamp-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (803.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

tamp-1.8.0-cp310-cp310-macosx_14_0_arm64.whl (174.3 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

tamp-1.8.0-cp310-cp310-macosx_13_0_x86_64.whl (182.0 kB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

tamp-1.8.0-cp39-cp39-win_amd64.whl (171.0 kB view details)

Uploaded CPython 3.9Windows x86-64

tamp-1.8.0-cp39-cp39-win32.whl (154.5 kB view details)

Uploaded CPython 3.9Windows x86

tamp-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (840.4 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

tamp-1.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl (864.8 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ ppc64le

tamp-1.8.0-cp39-cp39-musllinux_1_1_i686.whl (808.0 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

tamp-1.8.0-cp39-cp39-musllinux_1_1_aarch64.whl (835.4 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ ARM64

tamp-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (815.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

tamp-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (865.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ppc64le

tamp-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (784.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

tamp-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (809.6 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

tamp-1.8.0-cp39-cp39-macosx_14_0_arm64.whl (175.6 kB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

tamp-1.8.0-cp39-cp39-macosx_13_0_x86_64.whl (183.2 kB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

tamp-1.8.0-cp38-cp38-win_amd64.whl (171.3 kB view details)

Uploaded CPython 3.8Windows x86-64

tamp-1.8.0-cp38-cp38-win32.whl (154.4 kB view details)

Uploaded CPython 3.8Windows x86

tamp-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (853.8 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

tamp-1.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl (877.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ ppc64le

tamp-1.8.0-cp38-cp38-musllinux_1_1_i686.whl (816.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

tamp-1.8.0-cp38-cp38-musllinux_1_1_aarch64.whl (846.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ ARM64

tamp-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (827.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

tamp-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (869.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ppc64le

tamp-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (793.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

tamp-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (819.4 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

tamp-1.8.0-cp38-cp38-macosx_14_0_arm64.whl (175.3 kB view details)

Uploaded CPython 3.8macOS 14.0+ ARM64

tamp-1.8.0-cp38-cp38-macosx_13_0_x86_64.whl (182.9 kB view details)

Uploaded CPython 3.8macOS 13.0+ x86-64

File details

Details for the file tamp-1.8.0.tar.gz.

File metadata

  • Download URL: tamp-1.8.0.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0.tar.gz
Algorithm Hash digest
SHA256 442837f47cd19dd0169d19b334a1bebfbaa18908287e493ea37231a813f94cd4
MD5 34e3c690f7878dc0f692aaf5ad7697c1
BLAKE2b-256 6984821a4ad4eab7e734297397327681113d8a54555ba8321ccf0e6004e2152c

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 170.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b3b1dc9fec864b090e245f84629b6289fa566473679585c7d8981e6b59deafa0
MD5 33344ff73117534a68a1ea734e6a88ed
BLAKE2b-256 8f059b254eb3f0969754fb70e041670437c7d5a378dc149198d90b0d2e6f0513

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: tamp-1.8.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 153.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d60e32b1478914c758df42eeabd6c77dce1a398936e69a72d5a3d086b79a01e0
MD5 2b0856544d539e5cc83a283f6b862b34
BLAKE2b-256 eae7cc432b6b2e245b9f27849209c989c902028718ea1e83270ca25da663a672

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 676c34d694dc068d0a2d3a84c75942daa8c7249c2e33dee38c63651ec6837570
MD5 34f4253ab6d3b4d765962ebc10d037c9
BLAKE2b-256 bbedbafa2f4d44d87f0706f40119c9d7107c78dbc9ae2e10d7c7362fbec761ca

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a9a99deb72bd56df6c0e6a7861cb2a829fab9748c7eade2f593f6cb695100dad
MD5 aa6330b012c0fcc529539c58e0be8212
BLAKE2b-256 86cf1cc96e7c0fb82ac416ec53c21a91944010e5a538baa12aede2e09b29633f

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

  • Download URL: tamp-1.8.0-cp312-cp312-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 854.2 kB
  • Tags: CPython 3.12, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6abba8d844abc25275588596fd80f48891ab9c9ba19dfba2b69c32d5764fde67
MD5 06a5f056e8aecc2d8774290593003211
BLAKE2b-256 8813f02b9273c9c90f649c46fdc2112c0570721cfba005b979254ae842303fb3

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3f6746a2987b00c4de8e300a11cecbf5a5e656a256db6a87619c67e9a0396e9c
MD5 6e39b14e14aec614b1f5736a60aba246
BLAKE2b-256 31b704300e6d2b358c08cd75187bcdfc3ab35c997fab6986ee5c6cd998046a3e

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1222e0c65a95ab31616f732220ed0b6b6a995aac54ed025cc73ae8b5393d3e0d
MD5 672ffb27fb527955e3d493d232762ab2
BLAKE2b-256 5d3ca63089b2b3f6ff0b2cdf530537601f56ad272a3322b6147ead1459c5d878

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 248ca8d143509e5029f73c2f8cdad5d26e88c74f9b9fdbc532c8728d66e08040
MD5 06447b65af34c500a15699f3991c47ac
BLAKE2b-256 3811b8c953af0c1cc0a17fe23ec702329c8db16667c7e7297ccabd1d438cb5e4

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7282d7e57952caf20b8630b612d83bdd7c017f236b2b9ef11327f1cc80b14404
MD5 31c070678fa427f85bb9cb765108c7e8
BLAKE2b-256 40fdebfdba0ce27d62b68cea84a1b817dd06a4e03bbde4175372aace80d67398

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f81acaa9d869f234d50b22204267f0458208e2eca7f322c1041beb15d3f500a
MD5 6de77d27cf2dcf1db7ae11835e45f04f
BLAKE2b-256 6de68baec9428686fefe84e89d16c4b27e5f96193886627a8bb58fb254fadf54

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d866b43c0b41221cf35fe96b5fc7dd88962dc7759f883831e347f9a8c33030c5
MD5 d465f5999c5db54c2ff3447bb5744403
BLAKE2b-256 121bc89c0ff575a1c88d9a0482154ccab667d82a7704c5fa6d272f83e3dae533

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7e2e25a94d79e6506d83a721e7938d3899f18c5b20e72d1eeb8e5b1e3f567305
MD5 e50478c3fedab714e7c26d1eb72ce7fc
BLAKE2b-256 6772a38b02ea90539a1172b29ee16261cd3e0df9754d2e157a66e84b43ba77d9

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 170.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9e7dd82fb016952d49c5158002711f0a4bca0fed6f28fd0e6e172fa023175260
MD5 238966ff5629fc86a077b32176e4628b
BLAKE2b-256 fe268c937ab30df27b5221222a327911325ad2be515dd9bdb83866922f002ffe

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.8.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 152.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 255bef2e67efb7a04855d572eb49b598c7cb90560388b0b00317b173a020e2c9
MD5 28c7fd305231cd3549f6ad3e2a500a6e
BLAKE2b-256 417d0d43d289a5d1e2e960cf359d52f5615f6b7bb65c2709bcfa7af631e13df3

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4a7e9b9d974ff43c47a11517cd72c91cd3413fd6b38ab016fb2036817b7047dc
MD5 7ee9f2153ae3b2e7dc6758d11a91f9dd
BLAKE2b-256 95034c5fb3a4a92ffdb143972080e2c4dd6fda11c87ce29932f3ea873245ae3f

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c4bef736d78f05e4d9a28fa1f7cc337431595362da4fdb24e2a35b129557131a
MD5 2009e81be50a3f2387e0f89c3b538648
BLAKE2b-256 7bb4c1917d4a2308c1370aad067c5102ad2e647facca5fdf572f26be0b91ff2a

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

  • Download URL: tamp-1.8.0-cp311-cp311-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 851.6 kB
  • Tags: CPython 3.11, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cad5c86ae2648bd0ecafc43cdbdd60a98336fe29ad0e2471d51596e0c3ee0ce1
MD5 24eb7854beaf0a945d8617c4a0e90d7b
BLAKE2b-256 668a8fdd385f79dc62b93236d942a530fb69f60861f75c636b0833caaf6ea371

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7a9ceb37b9a59f64c30995aaf7758356af84ca642510e06b7381093575a1654c
MD5 ad6a0dab63f3d06078221acd2cb3258e
BLAKE2b-256 51cd23a9937c832c49e3b4369645653750c170dc970e5b614081e73d8781cfa8

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77c6426853a36da89e6136e964c5c4e3cfcc27584b2ad095bb02dd8d625fcbb0
MD5 b2837445211d79556661407e9f499817
BLAKE2b-256 f1e378c3dc9129b8f68ac91c10407831610dc6d7754e64d2a6ab42aa943d69bf

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bb06ae4fdf11e359502afa99baedb016876548e46bca74b451d420ae80cd387c
MD5 6e1102371315f421c53425043e62d79d
BLAKE2b-256 5e666e365346c81e13fe3aceee2a95cccc5ff37afdd12a402c21c89ad1110285

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 849903f9194a5570ddb700d64ff657908fc865d10e03e1e82449161a8df3b99d
MD5 05f4f9802526a59638c8947db0485151
BLAKE2b-256 98ba1a639fcafd64f8c59a38fd4e8e763382d24b2d4aa58208930a90f4a2c1a4

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4e7a9ee3db17dab46f388de4ad1dd9c405b7d60912a0444c6067eb168ec1cba
MD5 340e9a40052624815c2799b59adcee58
BLAKE2b-256 43f534a07f6375147bc11a7165635dd12c480bc822ad5e28698232353aa41d5f

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 26f100047ea10ff87a08ae8f453862a696be98f060027efed5f71df8a7b26c16
MD5 65c8c738072994de39a254ec41a686f8
BLAKE2b-256 7b06533bc40b8d2f87dc5c48b78c32446c7a1f04281e5201abc2069b96f0c899

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 bc104928e9decd572cb82a53b099d156e425ee022ea7cc2ad28bbdda8c4d916e
MD5 1a159169a30b25a30337eb98572ffb93
BLAKE2b-256 31c5e7cf9fc44782e325a9c5eda4b59a6c07233ad0df80b82ee959ee41529d91

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 169.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 db085608acad005d8a0b432fdd2b923d87fa9e309d1a8ed6e443f5bd2671ff3f
MD5 165c1ef749ce04be9b7be2c6569804e2
BLAKE2b-256 c7f7a64713896ccbeebe53bca2faccef237ab192fd02672ead140b107d08d215

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 153.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d432199b08bb25ed33f6091c678a3dc3e76d79f9393c56e7c64b9ae89d2723f3
MD5 d202968e49cf6e307fcb111dda8fe721
BLAKE2b-256 ba110636da86347b9c02399a6327d3411357199e69168fe83cabb4dfa6ea5f2c

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 32daa7082b6b9385349fe164d1d0be5d8d97f7f5d3d5b910f8b30bfcd41a1982
MD5 b1bf0fc381e204da1755fb8eca22461e
BLAKE2b-256 9b9a5c2bf9fe7baa3c41b466693b20a430931910d2024dd0aee8dadacaf98a58

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0c091ccb0d0575535c9fc7ebf75aa7cb090dd5d6808f87f5f712600e1cb6d205
MD5 60b8cbe1cf8a7d49e793f48df6efe80c
BLAKE2b-256 a5b1445fa3b496d3b42b47012117232119c1bedb5aa4b2ba78f266800d41845b

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: tamp-1.8.0-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 802.2 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e8a3b2123959346e160441c25b51412321ce4e194ef498b30445c77338db2d04
MD5 665685bbf3eb62b21170d3b2954041a0
BLAKE2b-256 3264a6e7489a7bbce45c0d963174f669a5597d1b42631e6797424877d3d1a9b8

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 87d79ab09bb88c273d567267fbd9f624eb229cf5e6ee6dfcb7104ffb313baac3
MD5 9eff5533edabd88a1d0222f1d85f7a09
BLAKE2b-256 90349ba5d0ec6697d08f39cc36f1d463f74f2a9d627882905156847ce82b0521

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08b9fd3f8d57001cdb81546ca846b62e1bf90fbb83a02dac3d595142be431440
MD5 104512021dee0da183e87a4565bd3cc1
BLAKE2b-256 8f3b07742b0059c356b72d6e23608cdcb8e22e940b120cce9f7bd0030d9440ae

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ff346fbea84212deada8b93fd754c13a205b0e28e13e0cbe6e772b4cf8f9cfa4
MD5 a06a6611f980aaca8c77a91b771aa357
BLAKE2b-256 81a4defa7ca45cf7216cf7d467d81eef10b89af0ec48f31ca3c00ce157b1f245

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1cde1123849e7827dd0b038e671f7d661ac0940063582c523a01c690e871cf5b
MD5 3b9a9853a6ccc84f54d83c8f6937f72c
BLAKE2b-256 0b2048f36bd17712343bf64544d6f78da3fd8afb12a831e93dcb1b83874c7484

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45e6d4fb09b2451429e5ae7f9fde5dc17c27793ea3836637a383843f31d3447d
MD5 30818791edf4d02d460b711a2be7433f
BLAKE2b-256 609f66fdbd8a2a177ca032d3ea3239904fd714865961dde874a32243127b1635

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f41de1c0dd55cdfcc7c1411079889f768185409d41ebb73dd21be04ffb8e6fd4
MD5 efe73889f0529627a240ccab956430f7
BLAKE2b-256 517badfe45bc87fe10ad75278ca3d57f715a599fbc309a7bb8ed28870ed7ce20

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a47c54daeed0c4c467ff2fa9dc36a2f19e6c909468be5ac22ba303c0ff468b68
MD5 d09e7ead8216359741c297d7c1d35331
BLAKE2b-256 6b81d9bbff6fd53ae26d5088fa6593b221c3808ae3dd43f8f2899b3acf8dbae6

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 171.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2f26f0a22303c078e4fedb007cd184af181ba2c488874b5274fcf5013e6d4392
MD5 0a37fd0222b4a8127973cde192c49c90
BLAKE2b-256 af337807cdba453fc09d0d4402b8cec8844c61c15ded25bf3707828fb5eabbe3

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 154.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 64a67272935e8602db13a8eb95522516ddd7469db2d5be456dd9ffeffdba4bc0
MD5 7429d0b69361f1317820911a4c0beec3
BLAKE2b-256 f7ac6342854cd65e62e8b994a00cca6bc60254b9e7439c8ca1bdba30c2ceba1e

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 840.4 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5795ce31c627d47fba440c225989dba5843105eb957b0fe8001a6abe5330940b
MD5 02356cf70a8075313e9847d66eb51fce
BLAKE2b-256 ba49198f8bc70cb7833ce35fd70ac375d540c934505ec02b088304a8de5e4fe3

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5119dced0a8f002d0fc682c6cd61f2f9d976c1183ed14dfdcb3912f3ff7a2b0b
MD5 5f5289eacb17dc000141dba06dbaa880
BLAKE2b-256 8139fcc409fa673891031b523a7d2ac76e914dab991d6c04fa699faf004c5388

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 808.0 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f1cda0a17446c693aebd6fe07e87dae9d94b04f3537276907ca831d9fba988ee
MD5 c6325d0918407d57fa58a21b6f674149
BLAKE2b-256 8ec021ebfbdab8017fc996cbafe7256440fb317e6456ff98041af830eb37dc62

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ce9786331f149d935534da47ff0e740f6032f56ed132b8fc36beba9d499f4311
MD5 9524140fd49fe509c1fadfde85959520
BLAKE2b-256 9ee2ad799874bff9c18ee96cd99d0eb0fc7173c8d1c375bed6afcb7b62c8d078

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 488884481e1d18856c34e674e0d6060cccd8ef039d54c9089ac3e6a602efa7fe
MD5 0a3965c48d4c143673def13db72d0baf
BLAKE2b-256 19d4704df7bde96b286c48916a2ef1fab97104346b2c325aeb4b1c7e2f6562c9

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a5d3a7d2d4cff1f43f116ae05d4d5594282f07bec5819675456cc67db851a2d1
MD5 def4db891c028625933ce04ec91360cf
BLAKE2b-256 8c0df3f74c42aaff45942b192475e90d9f8b3e379030a5119acf9a7e81691b49

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 aff4783b27614f4c3ee93c25cd9a1f06e0492c86b286df5cb79170fbc18ae148
MD5 4e753e51d86f83d34104cfb65693d8bc
BLAKE2b-256 5a15328b25941e94ed3be7584da9bb60e58391e7d480a206c9eb295eb17e8909

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28e2c1bd51bd8eed3d679b919f4f81e6f35635191f5df36818e6ccb176c0517d
MD5 b99b2927e4c8b3c192eff4349e80e287
BLAKE2b-256 795b96947358d5a0cc9932e7772c335aef4b275df4678c79aea8b41dad42f3ca

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 175.6 kB
  • Tags: CPython 3.9, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d536b0685e695232eb4254b3ac2fd324c1fba1373ecec778d0a6e8e1c21e1373
MD5 603add42b74a295dec4785d9c3536669
BLAKE2b-256 1e19f3b3d2d6d2bb307205a503a6647d00ad6d6d625f35bd7746d2b24f7f445d

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp39-cp39-macosx_13_0_x86_64.whl
  • Upload date:
  • Size: 183.2 kB
  • Tags: CPython 3.9, macOS 13.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 92463bba3e39293c1a05f7a49050ece52667bb70e20ca44d141b41e56d9e2d4c
MD5 04e75c0d56f83efdb5c8a378afa64180
BLAKE2b-256 5a2ca0a89e34f93305ad93d8b0a6bb462d91d5c6fdaea8b726f19a7d0850ff1f

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 171.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 296d41df98899f0d864f430199452c543b75a3359fcd3f7bf5df86a792b52f03
MD5 6e0d9d4897b8d5c6ba2842204d48d5c8
BLAKE2b-256 ec638d33894c58c415e18dbde6c5eca6afc3061c47ef8d4393c50e688edbe338

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 154.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 71fa04d76b63a7b913e5d323e43fbee5e485ef55615b9af53414c9c0a60034f8
MD5 aaeb094aed31ff927c527cdcf697a336
BLAKE2b-256 d80c9fbf6ae87ad10376ecd0b538a91555e5e4cb91abdacd5d42ab0108a69acd

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 853.8 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e81db6f89d80d7b28a13976dc899bae0c48a5b7c57cbd05df29e751c5ac14fd
MD5 0b5b5a1052f0beee0250f4defa2ca635
BLAKE2b-256 8d03e6d35119b3ad3d9a56c73e4cd7bcc773662891f20c955b397f9a6348b89d

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1e7cdbe045d9a09821e49fd9bf3c91629c3363bfe9e19fcb047dabe64afa3c33
MD5 ea1c7f56e86f9405a49444ea47da4ca4
BLAKE2b-256 3bb8fa402cbfdac4d1b84aa2151981aa10772c14585f6141b14bcc45085dc432

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 816.2 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 874854f84799ba597d108c71d03d20d2f927e2b20e505ac67998de466c2683d3
MD5 622dc615100429975b1e7a1e1f5ab015
BLAKE2b-256 9fd0e68393c4058ef862e12a2c2deb384874d41a07e194370f02d6f7c79383eb

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d9800f11916285ad0f4ffe049b60dc6a84cb132d1d21f8aa2111739fc5813b4a
MD5 8568f4d0011777d2db85ed54bed71dbc
BLAKE2b-256 96813f2bd8ab133c6697f46319c0d91590630b7e4a46437d0caa3ec74cbc7a7f

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b66b44c3c52f8ded50d73f8d86db5218c2f9bdcf7849adbbc524dbb9c132a184
MD5 b8a8d2e3bb8ef89d68ad2917af8c1384
BLAKE2b-256 9b2b2bebd7088076a1d5d82d9442233265581444b524414c732ae2b3062e118e

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c0a59821492d025c36ba2afb921eaef9654c34cded8a2bd051a10165157556a7
MD5 e335e0c96eb2ac084486fabb38a91f44
BLAKE2b-256 3288637edfa6d130a120ba4a618b019c03266152993b00189e607433186c77b1

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a2e7aad78c1fec4baff1e6932f509c08d1a90f2545f02736f4363471da8c70ee
MD5 5c1551329199e613c44c652f8de5f215
BLAKE2b-256 53696040ea6842254e6f9a5282a2aeae05b2d9f40d729d5659fe20b4c0f01626

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce27939b198c01a70afb7baba5e1e770bffb353ff10d180b0ade6d887c4f36e4
MD5 bcedfb5c1e2670831927c545b77c768f
BLAKE2b-256 dd854adadf89e048a67b93208be48018aab2d6ddba9dcac331f152ea872e6418

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 175.3 kB
  • Tags: CPython 3.8, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 53656ca877b9485fb87c05868765cbbe8bf169e2bc7f0e78931711a84cc7e330
MD5 bf9b179be03172f5853d55d5572d715c
BLAKE2b-256 0d17048177df636a6441673338ed4f19d5af3dbc7f46dbe3ab5023a8e38ade6d

See more details on using hashes here.

File details

Details for the file tamp-1.8.0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

  • Download URL: tamp-1.8.0-cp38-cp38-macosx_13_0_x86_64.whl
  • Upload date:
  • Size: 182.9 kB
  • Tags: CPython 3.8, macOS 13.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for tamp-1.8.0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 f8ed31d3c6fef068d170b0a0d8a6396a351d151902d2449a74440b8bf531fdb9
MD5 48a26219c22f330bc11f13a4a5ca4db6
BLAKE2b-256 55c6d0efd06accda3728342191ce1095674764efc17f97c39201e8407793905c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page