Skip to main content

No project description provided

Project description

tamp logo

Python compat PyPi GHA Status Coverage Documentation Status

Tamp

Tamp is a low-memory, DEFLATE-inspired lossless compression library.

Features

  • Various implementations available:

    • Pure Python:

      • tamp/compressor.py, tamp/decompressor.py

      • When available, Tamp will use a python-bound C implementation for speed.

    • C library:

      • tamp/_c_src/

  • High compression ratios and low memory use.

  • Compact compression and decompression implementations.

    • Compiled C library is <7.5KB (compressor + decompressor).

  • Mid-stream flushing.

    • Allows for submission of messages while continuing to compress subsequent data.

  • Customizable dictionary for greater compression of small messages.

  • Convenient CLI interface.

Installation

Tamp contains 3 implementationss:

  1. A desktop Cpython implementation that is optimized for readability

  2. A micropython viper implementation that is optimized for runtime performance.

  3. A C implementation (with python bindings) for accelerated desktop use and to be used in C projects.

Desktop Python

The Tamp library and CLI requires Python >=3.8 and can be installed via:

pip install tamp

MicroPython

For micropython use, there are 3 main files:

  1. tamp/__init__.py - Always required.

  2. tamp/decompressor_viper.py - Required for on-device decompression.

  3. tamp/compressor_viper.py - Required for on-device compression.

For example, if on-device decompression isn’t used, then do not include decompressor_viper.py. If manually installing, just copy these files to your microcontroller’s /lib/tamp folder.

If using mip, tamp can be installed by specifying the appropriate package-*.json file.

mip install github:brianpugh/tamp  # Defaults to package.json: Compressor & Decompressor
mip install github:brianpugh/tamp/package-compressor.json  # Compressor only
mip install github:brianpugh/tamp/package-decompressor.json  # Decompressor only

If using Belay, tamp can be installed by adding the following to pyproject.toml.

[tool.belay.dependencies]
tamp = [
   "https://github.com/BrianPugh/tamp/blob/main/tamp/__init__.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/compressor_viper.py",
   "https://github.com/BrianPugh/tamp/blob/main/tamp/decompressor_viper.py",
]

C

Copy the tamp/_c_src/tamp folder into your project. For more information, see the documentation.

Usage

Tamp works on desktop python and micropython. On desktop, Tamp is bundled with the tamp command line tool for compressing and decompressing tamp files.

CLI

Compression

Use tamp compress to compress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

$ tamp compress --help

 Usage: tamp compress [OPTIONS] [INPUT_PATH]

 Compress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file to compress or decompress. Defaults to  
                                 stdin.                                             
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output   -o      PATH                      Output file. Defaults to stdout.      
 --window   -w      INTEGER RANGE [8<=x<=15]  Number of bits used to represent the  
                                              dictionary window.                    
                                              [default: 10]                         
 --literal  -l      INTEGER RANGE [5<=x<=8]   Number of bits used to represent a    
                                              literal.                              
                                              [default: 8]                          
 --help                                       Show this message and exit.           
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp compress enwik8 -o enwik8.tamp  # Compress a file
echo "hello world" | tamp compress | wc -c  # Compress a stream and print the compressed size.

The following options can impact compression ratios and memory usage:

  • window - 2^window plaintext bytes to look back to try and find a pattern. A larger window size will increase the chance of finding a longer pattern match, but will use more memory, increase compression time, and cause each pattern-token to take up more space. Try smaller window values if compressing highly repetitive data, or short messages.

  • literal - Number of bits used in each plaintext byte. For example, if all input data is 7-bit ASCII, then setting this to 7 will improve literal compression ratios by 11.1%. The default, 8-bits, can encode any binary data.

Decompression

Use tamp decompress to decompress a file or stream. If no input file is specified, data from stdin will be read. If no output is specified, the compressed output stream will be written to stdout.

 $ tamp decompress --help

 Usage: tamp decompress [OPTIONS] [INPUT_PATH]

 Decompress an input file or stream.

╭─ Arguments ────────────────────────────────────────────────────────────────────────╮
   input_path      [INPUT_PATH]  Input file. If not provided, reads from stdin.     
╰────────────────────────────────────────────────────────────────────────────────────╯
╭─ Options ──────────────────────────────────────────────────────────────────────────╮
 --output  -o      PATH  Output file. Defaults to stdout.                           
 --help                  Show this message and exit.                                
╰────────────────────────────────────────────────────────────────────────────────────╯

Example usage:

tamp decompress enwik8.tamp -o enwik8
echo "hello world" | tamp compress | tamp decompress

Python

The python library can perform one-shot compression, as well as operate on files/streams.

import tamp

# One-shot compression
string = b"I scream, you scream, we all scream for ice cream."
compressed_data = tamp.compress(string)
reconstructed = tamp.decompress(compressed_data)
assert reconstructed == string

# Streaming compression
with tamp.open("output.tamp", "wb") as f:
    for _ in range(10):
        f.write(string)

# Streaming decompression
with tamp.open("output.tamp", "rb") as f:
    reconstructed = f.read()

Benchmark

In the following section, we compare Tamp against:

  • zlib, a python builtin gzip-compatible DEFLATE compression library.

  • heatshrink, a data compression library for embedded/real-time systems. Heatshrink has similar goals as Tamp.

All of these are LZ-based compression algorithms, and tests were performed using a 1KB (10 bit) window. Since zlib already uses significantly more memory by default, the lowest memory level (memLevel=1) was used in these benchmarks. It should be noted that higher zlib memory levels will having greater compression ratios than Tamp. Currently, there is no micropython-compatible zlib or heatshrink compression implementation, so these numbers are provided simply as a reference.

Compression Ratio

The following table shows compression algorithm performance over a variety of input data sourced from the Silesia Corpus and Enwik8. This should give a general idea of how these algorithms perform over a variety of input data types.

dataset

raw

tamp

zlib

heatshrink

enwik8

100,000,000

51,635,633

56,205,166

56,110,394

build/silesia/dickens

10,192,446

5,546,761

6,049,169

6,155,768

build/silesia/mozilla

51,220,480

25,121,385

25,104,966

25,435,908

build/silesia/mr

9,970,564

5,027,032

4,864,734

5,442,180

build/silesia/nci

33,553,445

8,643,610

5,765,521

8,247,487

build/silesia/ooffice

6,152,192

3,814,938

4,077,277

3,994,589

build/silesia/osdb

10,085,684

8,520,835

8,625,159

8,747,527

build/silesia/reymont

6,627,202

2,847,981

2,897,661

2,910,251

build/silesia/samba

21,606,400

9,102,594

8,862,423

9,223,827

build/silesia/sao

7,251,944

6,137,755

6,506,417

6,400,926

build/silesia/webster

41,458,703

18,694,172

20,212,235

19,942,817

build/silesia/x-ray

8,474,240

7,510,606

7,351,750

8,059,723

build/silesia/xml

5,345,280

1,681,687

1,586,985

1,665,179

Tamp usually out-performs heatshrink, and is generally very competitive with zlib. While trying to be an apples-to-apples comparison, zlib still uses significantly more memory during both compression and decompression (see next section). Tamp accomplishes competitive performance while using around 10x less memory.

Memory Usage

The following table shows approximately how much memory each algorithm uses during compression and decompression.

Action

tamp

zlib

heatshrink

Compression

(1 << windowBits)

(1 << (windowBits+2)) + 7 KB

(1 << windowBits)

Decompression

(1 << windowBits)

(1 << windowBits) + 7 KB

(1 << windowBits)

Both tamp and heatshrink have a few dozen bytes of overhead in addition to the primary window buffer, but are implementation-specific and ignored for clarity here.

Runtime

As a rough benchmark, here is the performance (in seconds) of these different compression algorithms on the 100MB enwik8 dataset. These tests were performed on an M1 Macbook Air.

Action

tamp (Python Reference)

tamp (C)

zlib

heatshrink (with index)

heatshrink (without index)

Compression

109.5

16.45

4.84

6.22

41.729

Decompression

54.0

0.98

0.08

0.82

0.82

Heatshrink v0.4.1 was used in these benchmarks. When heathshrink uses an index, an additional (1 << (windowBits + 1)) bytes of memory are used, tripling the memory requirement. Tamp could use a similar indexing to increase compression speed, but has chosen not to to focus on the primary goal of a low-memory compressor.

Binary Size

To give an idea on the resulting binary sizes, Tamp and other libraries were compiled for the Pi Pico. All libraries were compiled with -O3. Numbers reported in bytes.

Library

Compressor

Decompressor

Compressor + Decompressor

Tamp (micropython)

4779

4717

8262

Tamp (C)

2996

2192

5064

Heatshrink

2956

3876

6832

uzlib

2355

3963

6318

Heatshrink doesn’t include a high level API; in an apples-to-apples comparison the Tamp library would be even smaller.

When to use Tamp

On a Pi Pico (rp2040), the viper implementation of Tamp can compress data at around 4,300 bytes/s when using a 10-bit window. The data can then be decompressed at around 44,100 bytes/s. Tamp is good for compressing data on-device. If purely decompressing data on-device, it will nearly always be better to use the micropython-builtin zlib.decompress, when available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tamp-1.1.2.tar.gz (34.1 kB view details)

Uploaded Source

Built Distributions

tamp-1.1.2-cp311-cp311-win_amd64.whl (141.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

tamp-1.1.2-cp311-cp311-win32.whl (127.8 kB view details)

Uploaded CPython 3.11 Windows x86

tamp-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl (731.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tamp-1.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl (754.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

tamp-1.1.2-cp311-cp311-musllinux_1_1_i686.whl (694.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

tamp-1.1.2-cp311-cp311-musllinux_1_1_aarch64.whl (724.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

tamp-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tamp-1.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (758.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tamp-1.1.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (701.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (728.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tamp-1.1.2-cp311-cp311-macosx_12_0_x86_64.whl (156.5 kB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

tamp-1.1.2-cp311-cp311-macosx_12_0_arm64.whl (147.3 kB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tamp-1.1.2-cp310-cp310-win_amd64.whl (142.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

tamp-1.1.2-cp310-cp310-win32.whl (128.9 kB view details)

Uploaded CPython 3.10 Windows x86

tamp-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl (706.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tamp-1.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl (729.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

tamp-1.1.2-cp310-cp310-musllinux_1_1_i686.whl (682.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

tamp-1.1.2-cp310-cp310-musllinux_1_1_aarch64.whl (700.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

tamp-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (697.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tamp-1.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (722.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tamp-1.1.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (675.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (692.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tamp-1.1.2-cp310-cp310-macosx_12_0_x86_64.whl (159.1 kB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

tamp-1.1.2-cp310-cp310-macosx_12_0_arm64.whl (149.9 kB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tamp-1.1.2-cp39-cp39-win_amd64.whl (145.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

tamp-1.1.2-cp39-cp39-win32.whl (130.8 kB view details)

Uploaded CPython 3.9 Windows x86

tamp-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl (723.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tamp-1.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl (749.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

tamp-1.1.2-cp39-cp39-musllinux_1_1_i686.whl (697.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

tamp-1.1.2-cp39-cp39-musllinux_1_1_aarch64.whl (719.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

tamp-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (714.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tamp-1.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (744.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tamp-1.1.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (692.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (711.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tamp-1.1.2-cp39-cp39-macosx_12_0_x86_64.whl (160.4 kB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

tamp-1.1.2-cp39-cp39-macosx_12_0_arm64.whl (150.6 kB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

tamp-1.1.2-cp38-cp38-win_amd64.whl (145.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

tamp-1.1.2-cp38-cp38-win32.whl (130.7 kB view details)

Uploaded CPython 3.8 Windows x86

tamp-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl (754.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tamp-1.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl (781.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

tamp-1.1.2-cp38-cp38-musllinux_1_1_i686.whl (726.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

tamp-1.1.2-cp38-cp38-musllinux_1_1_aarch64.whl (749.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

tamp-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (724.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tamp-1.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (755.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tamp-1.1.2-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (704.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

tamp-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (722.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tamp-1.1.2-cp38-cp38-macosx_12_0_x86_64.whl (157.8 kB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

tamp-1.1.2-cp38-cp38-macosx_12_0_arm64.whl (148.2 kB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file tamp-1.1.2.tar.gz.

File metadata

  • Download URL: tamp-1.1.2.tar.gz
  • Upload date:
  • Size: 34.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2.tar.gz
Algorithm Hash digest
SHA256 a65e0f9eb6bd0ecdb0f81fcf63d3fa06ae39991dc6a7f920e7a0bc5b3f059a6d
MD5 c547e5dd6e270a20cdb1b3fe94cc5dcf
BLAKE2b-256 e331ebf920b4a3ac6be66362f651d3bb819eab569374ce272f431c0e3297fb4d

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 141.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6baf53bc4a48e126b915bf45696764006318e9f6a6fe02cb375495461dbef4e9
MD5 0a6a7e7d814c8b4393c5c2b20ec26957
BLAKE2b-256 5d973087a167534aded4caf50fe8063c78e92ab8541be97f67980c364c0b6b1f

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: tamp-1.1.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 127.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e43e11592ba243f74b9bfc513fc891d311e6e2afc0bff595347fab9ac54d01ee
MD5 00d44455a04eeb28fa0b32070df164be
BLAKE2b-256 939a860438d95d72c2b777ce9c038072b1485a0fd970297f7bb645cc4c6832ef

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 978748e6bbf20dce10e3f28683b1fc497cf36cd6f957729deb3f3e4fa6f31160
MD5 8ee4b81d82ebf84c25f4323ec9690663
BLAKE2b-256 83ae5acd2578f06617e320efee173a8e5581171313215c82316b66fb0c7dbd59

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 de5f88b7eef9d2b0f1d29db52b5cacddf1effeb57d55648893dc20af0b505b1c
MD5 4516d66f90c4ec15ba6ce091479be393
BLAKE2b-256 f05f8a12b8f8b56e503e5e773ad3d2b2577c64ddf5348a0a466bf806e97cc92c

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 658e3bc7f03712cb0801fd00d636aa5b83f28853ef0ff8fe5434fc6547fef81d
MD5 12619d6ceb520552b8f1332e01b732b4
BLAKE2b-256 8740b8a31d6a53776f31688c7441cf9255c375aeeb73fe2b2fba62045e65ac31

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c55b92d97812d57dd554e0e07b016f8c01fbcceff97851ff2d49a9927a91e293
MD5 aead2c8160d72a2a89f64f614f19b38a
BLAKE2b-256 daa96048061c3b56cf47c0627860f410a8ea0d2e08f3c64dc92ccf275b81fdf3

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75fac61d5ae71677304a7bb083b111eec4c176d00b64daf67c1adfa9c177255e
MD5 203429a07e12d1e6b4171b9e68865aeb
BLAKE2b-256 82e2e5429bb757d058fa4bf21c8f88eb6bd3bfbfc40104e2b1f7e908eea231db

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f82fc9a32fe28508d6991ca9684e35397abae395f6697f2b73ada28d98e6212e
MD5 bc1a37b580c07d1bb606cbb2c8ed0291
BLAKE2b-256 51746ad903c70536ccbbdaac2dcc17e45e8f2d7956a9de53bb70d37ac54d7feb

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 51693747d5fda5df3c0c4813637511c1fe2d77c7dee4d3efdde0ceb4695bb39f
MD5 7a6e6d1e9973c80fc1d74b47a86734bb
BLAKE2b-256 4d80acbb0fcc5b2ac2b2f5adc1ee1e2e951b4652d8601bf6acbea14f525518f0

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a92b7b5f38e9fd973e838b0c3a6903f7884ba54b95a515789b191b9bcf0657a4
MD5 c39672aa302506613332e20d3785bec1
BLAKE2b-256 9c72ce387bc24ca3e2c20a6b9a3c9a8204468430492d7839ac7d8dcbc1f618d1

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1769914e2309a1a899b1bc6bf0990de4d40ee90ddb14db94790c95f6fa1fd618
MD5 89baff26d4591f96f5a14b4aba56b8f2
BLAKE2b-256 da376516a2b2247332f6731f7b043af133551d11f48c1a4b17a2a69879d49539

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0e4426e99fc5cc485c1e25867ef920febbb423bc9a6e43489207189d785555f4
MD5 6801d84040aacfe194bc3ba6a7232e2b
BLAKE2b-256 43fc8c8a05d8977e28f673c844332fdb69bb1fcd456d6e468e70b42787713fa4

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 142.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10bcf31429e43088d2de3acd9e93b3c4004c79bd373d95b9df81c6746bc5e892
MD5 d48dca3112827ffa4ca78e5a6c224a5f
BLAKE2b-256 325b11c0c57550b7d631d6502327d77908c230af7bb20a545e7378f48806e56c

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: tamp-1.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 128.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 be3ff96ccd1800ce8b6ee83937135919e5bfbb32b002f8f6e95e7882c43c8784
MD5 5cbf4c8a3d1943285b61f3f5deb1860c
BLAKE2b-256 6dc585605fdb844082a1e46db950f6c20e9d65d9c2d6af49730282e3c16a9aaa

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3814267387b9f548d43a6324f510287393df4e3c411ded051937cfc53bc6ee50
MD5 b3764fd42bace37aeb8320243613ad0d
BLAKE2b-256 cf6be56ef94d185901a23249d69171f784d9b6cbaa7a9c9f208f82400741c69f

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0152a3816c6979e1b0de4acffe94b5bc3dbe642a218b3b685b92c1787e47cf8a
MD5 dc68d8e62f7463d8fe1fe33f41ae5d27
BLAKE2b-256 4ae990f5d9108d2908a0ffbc2182105df1006422c792cc26dd775d2b39c7297e

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 341d9c60a82fbd595cde2b29717b132bc34d985e16f09dc1d49844ecb3f62191
MD5 2d0a24ede9a0a5385ad026d7d0863d8f
BLAKE2b-256 38263fff8a4256b6883f0570362de1d6271a44ef3fd17b4a3b400b12391ddd07

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a8c7b9e01ccfffb0f7c2c1e220391dc4916652365a3f396c4bf23895f4f9b70d
MD5 65d22ededa6deb707a5d31b1bd8db750
BLAKE2b-256 3789d6e3026035c9e31f8a9d962fc634979aeea6b2e51e86f9d8c59a138fae7d

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a7d4bee888a3e0604037fa095045662164b394add6226504e23dc18333039e8
MD5 80ef8960cc7dd4d54c33131ca0ff77d7
BLAKE2b-256 dbd6a4ea7e4001c28e7960f206f0333d65966f17ba014a4a70104235aaf88bc0

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8116987f58bcfdefdd7f893752979fcaf19b1ce764ff8160996703b8b8be82c5
MD5 005bc3fcbaa41ef63f68f867e6c0abd8
BLAKE2b-256 00ed14d16453469c1710cb6e7a4798ebac63974d3de5bb658e029974bed5ec15

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f641f0dc6d697812c49ef651f9bbcbf23615b10904addce278111915ac316915
MD5 3d5c882eec8a10ca06605b1e3864e697
BLAKE2b-256 6ae52fb034080d7074abd6176bc6846cd2f2baef4c9d73c74e5803e06c79e06a

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6df79fd7541e8df97c3f6b21033dc7e9528a969cc9a509a1698c03e712862bdb
MD5 1e1dd52dfd5cf2c412ca35750c66374c
BLAKE2b-256 e0885575c92a32451bef2c9078545b226aabd9f8e9edbd6b8d2e70c3cf8d0120

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 01dd48c776bc603a82a43fb59411689438917af393fe709d992d4918c74163af
MD5 dc12fab82af8dcb262c4a1a06e19e3ed
BLAKE2b-256 26f35da7d1a0ada27e8cc35c434562b3360ca47f627fac31712b70d57550c733

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 43c316d83ccb1c68d3de4274d35f47ea757b5878b2ee47f56a5dda0c23891a18
MD5 82c39d1168fac6fdba1653269ff78363
BLAKE2b-256 7a267bb379d7e2219585a674ba78f7988e23b4194c62884bcd8e9ae6239b8718

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 145.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 13929fbf33c2fa99588cf222bacc102f7d27a69b2bc41754ec7e4b60ff59fb21
MD5 119e3ad2ab6c72b3eec2248146c2a44e
BLAKE2b-256 905a226134ca89ad88214d1495132dd3af6cad9f61a755853b44ed5c196ad862

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: tamp-1.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 130.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 43af46f7ce2c9837b6f4f7837dd4348fe87a8b0e086e2129c3c1e3ac3d5caab0
MD5 c84969f5727ded556630511f95453ca0
BLAKE2b-256 f8c98a85c9bf2d3a342e8fa91baeab64c0428add3571506b16bc12329ab4043e

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2474c37002a66d97c87d2f033679e0752cd1f88154eb8a65f93bf3c46c9d5f9a
MD5 18a1da1977d4eb8872d274d932d1753c
BLAKE2b-256 296fb34ff3201f08d6027320791b0be8d13e19e6712211a385ff49f04b55428d

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c7a68cacf29c48474f67a56d9d57c1d123af982f993160a35dcf07a3e6ad7404
MD5 b41f1235d385f84072305f1b3dcf8390
BLAKE2b-256 9029bf77825e5798e255bc881866cef0cea4f5ae695b64007491a93ad6657925

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 72a61e96880934dd284cfecaf99388fc10273ded003e3d7c579998c7b58875ef
MD5 d07da3289b6870abb3dc14c363516169
BLAKE2b-256 8fc3e32918f65f056363c7481f5fc952ae4480e5b7a8675afa731eca2e064237

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 89e703d9e779f0d3bced68ad05257618cce6229ea1887b3dd4438286f54a1c03
MD5 6174e46689d3cf4cd0093323f3127a13
BLAKE2b-256 5871517b9647b862c033ce12acb354554ecef21ccb0bee84f8d389d864d91fbc

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 463ee7810ac2f9cdf30100f6857b49d0e720c023b5a0a45c7dbf8c9dda161e82
MD5 8b6c44a34a2a4e6ecbb3c0658904529f
BLAKE2b-256 9c9f91aab391fd05e5d64d219aee892d89f5c8139803257c2775ee085dad6f34

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8199ba04195e752e87a6bae91c7d4d10721e082a2c4f6666f57864e0b0553437
MD5 8f7e00b95151d47124b459fd3e43a77a
BLAKE2b-256 b40934aeb4f1e8d94985cb0b6cfab7b4d3d34c0a88c3adcf92454b90d9a8de21

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d42da4f564f1331b9200b151d034b576c33e9a906d5893d7ff33ffab3a91d2e4
MD5 3b29e6c8f90393684740c927a6202c83
BLAKE2b-256 0b60e53440c2fc5a7d08fd672cecb57d9d419cfb62220eec4e67b6b1764c929f

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b072606421580d2727fa73323dd893f492c1c02885d202fe74109aaa72408da0
MD5 d145ce95aa220f881588756c436bece1
BLAKE2b-256 373b07b7450f55d1625210b64f6c4a8019898079e923da91d965a4ef92de33b6

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 edf30d67ad865323cb30b7c0f7a30f01ff41fae86e969f292e0b388dc795dd77
MD5 578311c2e5ed9873d50b8fb1d4cfd631
BLAKE2b-256 00d6fd7b86b5818ec2ee5899b81283057752c704203332cc091d6c3a8f80d22b

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 51f2dfa860566fb7ee3e9905a4f24768c970c45cd783d38b0a73885f6b0f3401
MD5 ad4276a70657aeac193f983eb2609c45
BLAKE2b-256 5a9d8f347c18ad62eedf984be84e6d84ee80356fd4216e4bbaa44cf1205d5bf3

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tamp-1.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 145.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2520f59029f829261b35b2a9bdeb95d2cbad5bd747fcdf704505210c31c4adde
MD5 71ec84e6504a8e01d2d696575b24e292
BLAKE2b-256 f16e2020d9763a0b0b59a5ca3d65bc781c6b97984de813074f08572faaf1f1a2

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: tamp-1.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 130.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for tamp-1.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d99d403ea904d2aad4eb35274a1226b38787f2e97cd54a40e7972d9a2ed036bd
MD5 b4d122ee1da9e1e86e36fa63eed74e48
BLAKE2b-256 3853aef7607d39c86e3e0041718e691f76b3579e91a5d958167b272107e1835d

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fa373861f8aaf812cf6365324c267bd58de34f5251c8e873da096f32abd643c7
MD5 22caac366bb9cb52b9dda3c2c7b0935f
BLAKE2b-256 77c0c456960e4ab7622295dfaf47a7d926ba2cf6fc722bfc16468b3a9d0d094b

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 11926150a2395a9bf45cfa8cb910edb07747626befd5b32032e26a4656ac7a97
MD5 b83b6cc3e4e0effc7b835896c447b517
BLAKE2b-256 c5384307496d1263e1135c60c42b7c12706ead9c4ad90acf12618977a1aa82be

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b5931fbd4f68ede81f37072cc27b4a75f1d76d0b5c102d58f50cc9d6bab5c436
MD5 cd39a242ccf3108987363e3741127e88
BLAKE2b-256 12f92a96e75340e8d18831e2039b99dfe5003e7d5d7d710000fe47745dcaae8b

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 02c44458b8e99da873e51d8af7d0bcf5b63c92a0768eb090678436a073568d5d
MD5 efafb09a2d1207724937ab9d7819681e
BLAKE2b-256 e1e9acedee368bfe80b1e64d74b010a5de55ad6920de54f152f4a5fb314ddb4a

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6da3cd9bce68206af0edbeee24afb7bf72eb87194187abdd288175e4167e6c4e
MD5 5ff3e2b97af6e7f951bc9b3dd9704abf
BLAKE2b-256 dc637cb70c31d6e78596256a3d952f1cf00d027bfc1bfe951d275efc452d9694

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 08febc60f4067bd562b550c30e889f4b71a9a89352b47fb786943e97f83a4a7d
MD5 197c4ad57debe36ad2a06a083704de56
BLAKE2b-256 c7e527dbac6cc96f58b2e239bc02aae8d5a124bccb94f55260fd150e5c3b148d

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 04144c6be203185e1c35abd40cb7a3a31097e9213a07da82f29609c15943c256
MD5 cc0f78620d83dbb0389123401d415017
BLAKE2b-256 31a82e9bfee46b44f300b0962cef54bba733146828eaed98599de8c8843d2658

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03b1211c4966cd8ca529d99d35102ca74675afefda02f3128b10a8608ed5be72
MD5 bba7745b58ee5eab78091737d3bdb693
BLAKE2b-256 f8cc53952eafb5fd92accd16d7076e1ecf16691d9aeea78963793ed2502097fa

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c67475227194db6bbdea36096579660b7f67027e2360e401d5ade62e6455a736
MD5 bfe04acaa3d9bd9704597bc8f52f094a
BLAKE2b-256 f42aea77d55dd44dd37700d6503c4b0c17702738b89dbc70fd7ccd7bde4ecb17

See more details on using hashes here.

File details

Details for the file tamp-1.1.2-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tamp-1.1.2-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 9cfdb4db60c2cf949f703cdfe289b94dee47d17b64ec73f7ca2b899e4051b707
MD5 77ba3270a5eada2592451d64df14bb92
BLAKE2b-256 a7c9977bd0537ea93d5c79fc4018a7fe681679c63ab9474bc9c36ae4e038c1e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page