Skip to main content

Collection of training and inference decision forest algorithms.

Project description

TensorFlow Decision Forests (TF-DF) is a library to train, run and interpret decision forest models (e.g., Random Forests, Gradient Boosted Trees) in TensorFlow. TF-DF supports classification, regression and ranking.

TF-DF is powered by Yggdrasil Decision Forest (YDF, a library to train and use decision forests in C++, JavaScript, CLI, and Go. TF-DF models are compatible with YDF' models, and vice versa.

Tensorflow Decision Forests is available on Linux and Mac. Windows users can use the library through WSL+Linux.

Usage example

A minimal end-to-end run looks as follows:

import tensorflow_decision_forests as tfdf
import pandas as pd

# Load the dataset in a Pandas dataframe.
train_df = pd.read_csv("project/train.csv")
test_df = pd.read_csv("project/test.csv")

# Convert the dataset into a TensorFlow dataset.
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_df, label="my_label")
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_df, label="my_label")

# Train the model
model = tfdf.keras.RandomForestModel()
model.fit(train_ds)

# Look at the model.
model.summary()

# Evaluate the model.
model.evaluate(test_ds)

# Export to a TensorFlow SavedModel.
# Note: the model is compatible with Yggdrasil Decision Forests.
model.save("project/model")

Google I/O Presentation

Documentation & Resources

The following resources are available:

Installation

To install TensorFlow Decision Forests, run:

pip3 install tensorflow_decision_forests --upgrade

See the installation page for more details, troubleshooting and alternative installation solutions.

Contributing

Contributions to TensorFlow Decision Forests and Yggdrasil Decision Forests are welcome. If you want to contribute, make sure to review the developer manual and contribution guidelines.

Citation

If you us Tensorflow Decision Forests in a scientific publication, please cite the following paper: Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library.

Bibtex

@inproceedings{GBBSP23,
  author       = {Mathieu Guillame{-}Bert and
                  Sebastian Bruch and
                  Richard Stotz and
                  Jan Pfeifer},
  title        = {Yggdrasil Decision Forests: {A} Fast and Extensible Decision Forests
                  Library},
  booktitle    = {Proceedings of the 29th {ACM} {SIGKDD} Conference on Knowledge Discovery
                  and Data Mining, {KDD} 2023, Long Beach, CA, USA, August 6-10, 2023},
  pages        = {4068--4077},
  year         = {2023},
  url          = {https://doi.org/10.1145/3580305.3599933},
  doi          = {10.1145/3580305.3599933},
}

Raw

Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library, Guillame-Bert et al., KDD 2023: 4068-4077. doi:10.1145/3580305.3599933

Contact

You can contact the core development team at decision-forests-contact@google.com.

Credits

TensorFlow Decision Forests was developed by:

  • Mathieu Guillame-Bert (gbm AT google DOT com)
  • Jan Pfeifer (janpf AT google DOT com)
  • Richard Stotz (richardstotz AT google DOT com)
  • Sebastian Bruch (sebastian AT bruch DOT io)
  • Arvind Srinivasan (arvnd AT google DOT com)

License

Apache License 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_decision_forests-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

tensorflow_decision_forests-1.12.0-cp312-cp312-macosx_12_0_arm64.whl (12.2 MB view details)

Uploaded CPython 3.12macOS 12.0+ ARM64

tensorflow_decision_forests-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

tensorflow_decision_forests-1.12.0-cp311-cp311-macosx_12_0_arm64.whl (12.2 MB view details)

Uploaded CPython 3.11macOS 12.0+ ARM64

tensorflow_decision_forests-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

tensorflow_decision_forests-1.12.0-cp310-cp310-macosx_12_0_arm64.whl (12.2 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

tensorflow_decision_forests-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

tensorflow_decision_forests-1.12.0-cp39-cp39-macosx_12_0_arm64.whl (12.2 MB view details)

Uploaded CPython 3.9macOS 12.0+ ARM64

File details

Details for the file tensorflow_decision_forests-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d80ad5f29efa566adfd09fca61584a41666a20e064585a64c777a1df85a5d2e6
MD5 a76b4f64320869afa5152eafe10680a7
BLAKE2b-256 76ff359b34530d03343d294ee3e27b8155f627b8571a3558ba396b1955d83ad7

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 14ffa15864d10782445044302e42d0d88d07536669578f66fbeccdc20b1a9ed2
MD5 1592b6637fc00012486851eddb3ee3f9
BLAKE2b-256 31cf8b6850fc8b55d5477e54687533cf5019df41e64621e57a6d27cb3ca1a41a

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 990dcac0874c4b8cf646ab3438b8f804c522e8ebcc0b35116ea02cf05f46e026
MD5 cb704c53b61fe145476b75b225b63a57
BLAKE2b-256 5f15d56faf9524d42676d90a1a1e362254236f29e2cd1ca99ff3281f4beb7fb3

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 43e11ffcb18a097789ecfde0871a5130d6ffb8a6aaaf2307c072faa74f6d9f48
MD5 ea866fa99480758fae3505f2d05f96ef
BLAKE2b-256 d7c5964260e4907161358ce038b060393621702eedbbbb79d2878c6a13424260

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41401e6b24e958e5edb8e354de76a3e290e707050ca8190acd65b030aafc139c
MD5 b66f1b5d21460845fbce84beee6997d7
BLAKE2b-256 1ce201837866e38ddd2344e2a5442b280cbbd748180b26851c89f5b7f120903e

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d0af6be361121db1317efd29147daae124cc0d98edcf8776b077fc429737ab87
MD5 d7b1f00a80b5acb90b0fc5a30a48c692
BLAKE2b-256 4a3bbd655d294c1ed020b69cb17fbb18e0aa71c9e84e413458aff291ae4286e7

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b224809745231204e8e049f98d32b93c04075d9f9ec8d3bbcd5ae4e58ba7db2
MD5 d7d2cd39f097fd08325e4c3f0682e254
BLAKE2b-256 6d57afe6b1b4cfde602dff15370cb304383c6ae1abdfb0df7f4b5942b5f63941

See more details on using hashes here.

File details

Details for the file tensorflow_decision_forests-1.12.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow_decision_forests-1.12.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3daa473ccf05b7aa33f104212b497698be6c42a74d3e761777314cb88f6822d8
MD5 8ea987e8fb7daa73ad68bacab38d80fb
BLAKE2b-256 e71f564a925a77dbad894aca7db2696249d63a38a8828f6cb41ceb7cad8196ed

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page