Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders logo

TensorFlow Recommenders build badge PyPI badge

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movie_lens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movie_lens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.2.0.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.2.0-py3-none-any.whl (37.6 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.2.0.tar.gz.

File metadata

  • Download URL: tensorflow-recommenders-0.2.0.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.6.1

File hashes

Hashes for tensorflow-recommenders-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b258012eb07171a673319f1f0fb2466f443c4cdaa62de6cd471a60c3e8984bf5
MD5 52715248e151b27d32481eb8bb7169fe
BLAKE2b-256 3f94029796f742e69f9f05c6c4892bc85a54eb10b4449b0f43f09b8d8bde14e5

See more details on using hashes here.

File details

Details for the file tensorflow_recommenders-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: tensorflow_recommenders-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 37.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.1 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.6.1

File hashes

Hashes for tensorflow_recommenders-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2045b9e8c013413637d3f76e7a7fd734ae912764de2e16c575f99ec578d19141
MD5 21237333e38309c9eee124343dd51af9
BLAKE2b-256 a2c1d2dbbf5f62027f158ed56f71c114e747249b00a005951d229dbd02db5118

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page