Skip to main content

TensorFlow is an open source machine learning framework for everyone.

Project description

Python PyPI

TensorFlow is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices.

Originally developed by researchers and engineers from the Google Brain team within Google's AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains. TensorFlow is licensed under Apache 2.0.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow-2.12.1-cp311-cp311-win_amd64.whl (1.9 kB view details)

Uploaded CPython 3.11Windows x86-64

tensorflow-2.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (585.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

tensorflow-2.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

tensorflow-2.12.1-cp311-cp311-macosx_10_15_x86_64.whl (230.2 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

tensorflow-2.12.1-cp310-cp310-win_amd64.whl (1.9 kB view details)

Uploaded CPython 3.10Windows x86-64

tensorflow-2.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (585.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

tensorflow-2.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

tensorflow-2.12.1-cp310-cp310-macosx_10_15_x86_64.whl (230.1 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

tensorflow-2.12.1-cp39-cp39-win_amd64.whl (1.9 kB view details)

Uploaded CPython 3.9Windows x86-64

tensorflow-2.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (585.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

tensorflow-2.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

tensorflow-2.12.1-cp39-cp39-macosx_10_15_x86_64.whl (230.1 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

tensorflow-2.12.1-cp38-cp38-win_amd64.whl (1.9 kB view details)

Uploaded CPython 3.8Windows x86-64

tensorflow-2.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (585.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

tensorflow-2.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

tensorflow-2.12.1-cp38-cp38-macosx_10_15_x86_64.whl (230.1 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

File details

Details for the file tensorflow-2.12.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4575641b7803dd87adbd0d610da147c08399c1aa7eac3505deedbad71671cc28
MD5 a0dbf47f4f8c0dc71903ad7f853c0d81
BLAKE2b-256 caa98cf654c2a89ea0103f3d3ea6f953b425d22f98736f7c2d2ebccf863b6d31

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 857a1e331cc34f399236642dbf4ac8f3ca4f36e2df04e45516819db1b3c827c1
MD5 429fdc1f46894e3d98a55560e77c17dd
BLAKE2b-256 2e673ff5df2d196eb37a299651caa966da54bcd80e69a3ff695917d5fc232c60

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e651b4314c79693b6defd25ba4608e8c003b7f7bbea3e22d08535cd96ad8e4e
MD5 66a879fc6b77b810d938c56e557e4ad9
BLAKE2b-256 a5a02aee146f2aa95bda60badc3185b69bce37d36b4dcfa17e89ea019fb6b927

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 27aa1a93d44c30d84cc287fe10b94a03363e6c9350f9ae9d1d889aa892fc67b8
MD5 072428b8d24b893e5ae8be919f607338
BLAKE2b-256 9c05c9d925eb0eb0f5e32547a98793161822552472ea3f78e8f2f06a9095658a

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0608ef582920a096723343f6d480968481d810e59a27924b63be087c278a4b68
MD5 afa400bdb26ddd3c50566ffda96ac238
BLAKE2b-256 3ed01f9d5483af2b8df1f488a89e41796daafe1ea9b75c27d8d9c0f0b634e1dc

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 721da3bd6454d696d07b4a5d786db91650a5b662933aca32b9d8c39160eb1727
MD5 503b87d9b21bdf8c1e9052d523e2bbb9
BLAKE2b-256 5aeb912d970b667fa8884199eb7cc2c351b86f8c73ea3d57a161ea91547c5d3b

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2617409297289cbddd45bf12c443a5c9273610b56dba2989f57c6626fef9896e
MD5 5b3175bdfabf8edc201f7024f2598b76
BLAKE2b-256 ed129237df5805416ae7fa06b970d2060d494d26ef97a70395e37ce5cb6e2356

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 58914fcea59b92fb535c839e202c26a7e47a55a03547502431bf9aa99b84a867
MD5 4bd51f519bc1220a9ca925fac08eeb3c
BLAKE2b-256 391e275239519a1cb1190c1cb762dab263fa0a017b74042f9f804972065c29b1

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tensorflow-2.12.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for tensorflow-2.12.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ed56c28031ad10d0d48f5b5375034e79b31ab166ded9318152174670798d537
MD5 9084dab139b42c48bfd55f680a1f2da7
BLAKE2b-256 d07cbe786406e79ee64d5a24e9268d87d9d51d0bf3b86d21515bf276e1da8beb

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4856c8e3f45df4dd7bc1f47cdf275bdb759895d386141d8234f4d83f58707db7
MD5 6fb27ef8cf62b2546fcb4d9669ad961d
BLAKE2b-256 4378c177a0d730e37bf63d3127d83871524ffaa1827a593ea133cfe0d164579c

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb0b21cc715b62e30c7916196252f62fc6d183d6ce74a772a1f7ed246a887ff1
MD5 1a42dc8df0a26a4c638ba83a86d56589
BLAKE2b-256 a377f97f162ec6206aae7ec5680b8740b753a4ead42dc3ee1f79eade78d5fc02

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 383b28b254c6079644e6a8f08583db60488bb1e50d19b99e003103eb7f6cb6f3
MD5 acb4da0d16e226c040a3e01bf283aced
BLAKE2b-256 8e7557ff7109b2bab5345e174350df33cb8cde26ef1e87d3935d2d1601288bee

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tensorflow-2.12.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for tensorflow-2.12.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a7527d3d1672bea53c327ff3c6f6f10206fa1d0df0fb8dcdf71e512037f35c8
MD5 6de1c2d5f0f4bc1c5d9e23ade0739625
BLAKE2b-256 a85f86408cb4c4fb6e34e70c180107688584c6420216ebf6c2e5f785e73e6863

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88f47e035d34f3eca5d7f27278d59b129240ad9a9780408c1ce717d6cd583a3f
MD5 bcaae3058d58ae9d8c41dda9d3ce15e9
BLAKE2b-256 415837cbe746dabc5723969636d2f4a8e41ac11b45c19b8d32b58bfb8ef8de98

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2670f3cbefa6adf9f839ff8849ffaa80686b73d7fb70a10e4cf969463e0b69ae
MD5 a4625f20ad34f857527e5d9cd20ac849
BLAKE2b-256 ba330eef44ebab98da880b404968fd32504b39296ca8c6f029a518dda1dad371

See more details on using hashes here.

File details

Details for the file tensorflow-2.12.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.12.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 af855bf03d51b10aa500427c025ae81f08a97ccbcb864f432c9336b916af2004
MD5 7475718cd792e6ad0abd57826f9db569
BLAKE2b-256 b1be7cbf692345cceb69350081ba959f11bee82e0bb89e9b593eefa6722e50cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page