Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Tensor-based Phase-Amplitude Coupling

Project description

https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg https://badge.fury.io/py/tensorpac.svg https://pepy.tech/badge/tensorpac https://badges.gitter.im/EtienneCmb/tensorpac.svg
https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png

Description

Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our documentation for details.

Installation

Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :

$ pip install tensorpac

Code snippet & illustration

from tensorpac import Pac
from tensorpac.signals import pac_signals_tort

# Dataset of signals artificially coupled between 10hz and 100hz :
n_epochs = 20
n_times = 4000
sf = 512.  # sampling frequency

# Create artificially coupled signals using Tort method :
data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs,
                              dpha=10, damp=10, sf=sf, n_times=n_times)

# Define a PAC object :
p = Pac(idpac=(6, 3, 0), f_pha=(2, 20, 1, 1), f_amp=(60, 150, 5, 5))
# Filter the data and extract PAC :
xpac = p.filterfit(sf, data, n_perm=20)

# Plot your Phase-Amplitude Coupling :
p.comodulogram(xpac.mean(-1), title='Contour plot with 5 regions',
               cmap='Spectral_r', plotas='contour', ncontours=5)

p.show()
https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tensorpac, version 0.6.2
Filename, size File type Python version Upload date Hashes
Filename, size tensorpac-0.6.2-py3-none-any.whl (36.2 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size tensorpac-0.6.2.tar.gz (31.1 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page