Skip to main content

Tensor-based Phase-Amplitude Coupling

Project description

https://github.com/EtienneCmb/tensorpac/workflows/Tensorpac/badge.svg https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master https://circleci.com/gh/EtienneCmb/tensorpac/tree/master.svg?style=svg https://ci.appveyor.com/api/projects/status/0arxtw05583gc3e2/branch/master?svg=true https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg https://badge.fury.io/py/tensorpac.svg https://pepy.tech/badge/tensorpac https://badges.gitter.im/EtienneCmb/tensorpac.svg
https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png

Description

Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing for an efficient, and highly flexible modular implementation of PAC metrics both known and novel. Check out our documentation for details.

Installation

Tensorpac uses NumPy, SciPy and joblib for parallel computing. To get started, just open your terminal and run :

$ pip install tensorpac

Code snippet & illustration

from tensorpac import Pac
from tensorpac.signals import pac_signals_tort

# Dataset of signals artificially coupled between 10hz and 100hz :
n_epochs = 20   # number of trials
n_times = 4000  # number of time points
sf = 512.       # sampling frequency

# Create artificially coupled signals using Tort method :
data, time = pac_signals_tort(f_pha=10, f_amp=100, noise=2, n_epochs=n_epochs,
                              dpha=10, damp=10, sf=sf, n_times=n_times)

# Define a Pac object
p = Pac(idpac=(6, 0, 0), f_pha='hres', f_amp='hres')
# Filter the data and extract pac
xpac = p.filterfit(sf, data)

# plot your Phase-Amplitude Coupling :
p.comodulogram(xpac.mean(-1), cmap='Spectral_r', plotas='contour', ncontours=5,
               title=r'10hz phase$\Leftrightarrow$100Hz amplitude coupling',
               fz_title=14, fz_labels=13)

p.show()
https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorpac-0.6.5.tar.gz (388.1 kB view details)

Uploaded Source

Built Distribution

tensorpac-0.6.5-py3-none-any.whl (423.6 kB view details)

Uploaded Python 3

File details

Details for the file tensorpac-0.6.5.tar.gz.

File metadata

  • Download URL: tensorpac-0.6.5.tar.gz
  • Upload date:
  • Size: 388.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200712 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for tensorpac-0.6.5.tar.gz
Algorithm Hash digest
SHA256 a23511f13a38464a428504f890377b8664145b7c094dd5faa0adeb1fddfde248
MD5 c8ecf5c4bcbebf2cf877ae0b33dbc650
BLAKE2b-256 344cb7cab0522f4e9601a7e44d14d250801267d20848498426da875f53896bab

See more details on using hashes here.

File details

Details for the file tensorpac-0.6.5-py3-none-any.whl.

File metadata

  • Download URL: tensorpac-0.6.5-py3-none-any.whl
  • Upload date:
  • Size: 423.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200712 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for tensorpac-0.6.5-py3-none-any.whl
Algorithm Hash digest
SHA256 579d65a0ba85400886dcf4074d5704d334ec9543bcf2d8cd2a6d9f63f37e57d0
MD5 3789930d4648f4caa7636c3614c932c5
BLAKE2b-256 4a748818a87c860f24dff6f22032cf3a6464d9aa7875db474fa676df0d919682

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page